Breast Dense Tissue Segmentation with Noisy Labels: A Hybrid Threshold-Based and Mask-Based Approach.

breast density segmentation deep learning mammography noisy labels

Journal

Diagnostics (Basel, Switzerland)
ISSN: 2075-4418
Titre abrégé: Diagnostics (Basel)
Pays: Switzerland
ID NLM: 101658402

Informations de publication

Date de publication:
28 Jul 2022
Historique:
received: 04 07 2022
revised: 18 07 2022
accepted: 25 07 2022
entrez: 26 8 2022
pubmed: 27 8 2022
medline: 27 8 2022
Statut: epublish

Résumé

Breast density assessed from digital mammograms is a known biomarker related to a higher risk of developing breast cancer. Supervised learning algorithms have been implemented to determine this. However, the performance of these algorithms depends on the quality of the ground-truth information, which expert readers usually provide. These expert labels are noisy approximations to the ground truth, as there is both intra- and inter-observer variability among them. Thus, it is crucial to provide a reliable method to measure breast density from mammograms. This paper presents a fully automated method based on deep learning to estimate breast density, including breast detection, pectoral muscle exclusion, and dense tissue segmentation. We propose a novel confusion matrix (CM)-YNet model for the segmentation step. This architecture includes networks to model each radiologist's noisy label and gives the estimated ground-truth segmentation as well as two parameters that allow interaction with a threshold-based labeling tool. A multi-center study involving 1785 women whose "for presentation" mammograms were obtained from 11 different medical facilities was performed. A total of 2496 mammograms were used as the training corpus, and 844 formed the testing corpus. Additionally, we included a totally independent dataset from a different center, composed of 381 women with one image per patient. Each mammogram was labeled independently by two expert radiologists using a threshold-based tool. The implemented CM-Ynet model achieved the highest DICE score averaged over both test datasets (0.82±0.14) when compared to the closest dense-tissue segmentation assessment from both radiologists. The level of concordance between the two radiologists showed a DICE score of 0.76±0.17. An automatic breast density estimator based on deep learning exhibited higher performance when compared with two experienced radiologists. This suggests that modeling each radiologist's label allows for better estimation of the unknown ground-truth segmentation. The advantage of the proposed model is that it also provides the threshold parameters that enable user interaction with a threshold-based tool.

Identifiants

pubmed: 36010173
pii: diagnostics12081822
doi: 10.3390/diagnostics12081822
pmc: PMC9406546
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : Instituto de Salud Carlos III
ID : FEDER (PI17/00047)
Organisme : Instituto Valenciano de Competitividad Empresarial
ID : IMDEEA/2021/100

Références

IEEE Trans Med Imaging. 2004 Jul;23(7):903-21
pubmed: 15250643
Invest Radiol. 2015 Sep;50(9):615-28
pubmed: 26083829
Diagnostics (Basel). 2020 Nov 23;10(11):
pubmed: 33238512
Comput Methods Programs Biomed. 2014 Sep;116(2):105-15
pubmed: 24636804
Radiology. 2019 Nov;293(2):246-259
pubmed: 31549948
N Engl J Med. 2007 Jan 18;356(3):227-36
pubmed: 17229950
Med Image Anal. 2021 Oct;73:102138
pubmed: 34274690
Comput Methods Programs Biomed. 2019 Aug;177:123-132
pubmed: 31319940
Med Phys. 2018 Mar;45(3):1178-1190
pubmed: 29363774
Breast Cancer Res Treat. 2017 Apr;162(3):419-425
pubmed: 28160159
PLoS One. 2015 Sep 03;10(9):e0136667
pubmed: 26335569
Acta Radiol. 2009 Jan;50(1):3-14
pubmed: 19037825
Lancet Oncol. 2005 Oct;6(10):798-808
pubmed: 16198986
IEEE Trans Med Imaging. 2016 May;35(5):1322-1331
pubmed: 26915120
Breast. 2005 Aug;14(4):269-75
pubmed: 16085233
Comput Methods Programs Biomed. 2020 Oct;195:105668
pubmed: 32755754
Springerplus. 2013 May 24;2(1):242
pubmed: 23865000
J Clin Med. 2019 Mar 06;8(3):
pubmed: 30845692
IEEE Trans Inf Technol Biomed. 2008 Jan;12(1):55-65
pubmed: 18270037
Breast Cancer Res Treat. 2017 Oct;165(3):565-572
pubmed: 28660430
Acad Radiol. 2012 Feb;19(2):236-48
pubmed: 22078258
Nat Rev Clin Oncol. 2011 Dec 06;9(1):33-40
pubmed: 22143145
Radiology. 2019 Jan;290(1):52-58
pubmed: 30325282
Korean J Radiol. 2019 Feb;20(2):218-224
pubmed: 30672161

Auteurs

Andrés Larroza (A)

Instituto Tecnológico de la Informática, Universitat Politècnica de València, Camino de Vera, 46022 València, Spain.

Francisco Javier Pérez-Benito (FJ)

Instituto Tecnológico de la Informática, Universitat Politècnica de València, Camino de Vera, 46022 València, Spain.

Juan-Carlos Perez-Cortes (JC)

Instituto Tecnológico de la Informática, Universitat Politècnica de València, Camino de Vera, 46022 València, Spain.

Marta Román (M)

Department of Epidemiology and Evaluation, IMIM (Hospital del Mar Medical Research Institute), Passeig Marítim 25-29, 08003 Barcelona, Spain.

Marina Pollán (M)

National Center for Epidemiology, Carlos III Institute of Health, Monforte de Lemos, 5, 28029 Madrid, Spain.
Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Carlos III Institute of Health, Monforte de Lemos, 5, 28029 Madrid, Spain.

Beatriz Pérez-Gómez (B)

National Center for Epidemiology, Carlos III Institute of Health, Monforte de Lemos, 5, 28029 Madrid, Spain.
Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Carlos III Institute of Health, Monforte de Lemos, 5, 28029 Madrid, Spain.

Dolores Salas-Trejo (D)

Valencian Breast Cancer Screening Program, General Directorate of Public Health, 46022 València, Spain.
Centro Superior de Investigación en Salud Pública, CSISP, FISABIO, 46020 València, Spain.

María Casals (M)

Valencian Breast Cancer Screening Program, General Directorate of Public Health, 46022 València, Spain.
Centro Superior de Investigación en Salud Pública, CSISP, FISABIO, 46020 València, Spain.

Rafael Llobet (R)

Instituto Tecnológico de la Informática, Universitat Politècnica de València, Camino de Vera, 46022 València, Spain.

Classifications MeSH