Quantitative Measurement of Pneumothorax Using Artificial Intelligence Management Model and Clinical Application.
artificial intelligence
deep learning
pneumothorax
true label
Journal
Diagnostics (Basel, Switzerland)
ISSN: 2075-4418
Titre abrégé: Diagnostics (Basel)
Pays: Switzerland
ID NLM: 101658402
Informations de publication
Date de publication:
29 Jul 2022
29 Jul 2022
Historique:
received:
12
05
2022
revised:
16
07
2022
accepted:
26
07
2022
entrez:
26
8
2022
pubmed:
27
8
2022
medline:
27
8
2022
Statut:
epublish
Résumé
Artificial intelligence (AI) techniques can be a solution for delayed or misdiagnosed pneumothorax. This study developed, a deep-learning-based AI model to estimate the pneumothorax amount on a chest radiograph and applied it to a treatment algorithm developed by experienced thoracic surgeons. U-net performed semantic segmentation and classification of pneumothorax and non-pneumothorax areas. The pneumothorax amount was measured using chest computed tomography (volume ratio, gold standard) and chest radiographs (area ratio, true label) and calculated using the AI model (area ratio, predicted label). Each value was compared and analyzed based on clinical outcomes. The study included 96 patients, of which 67 comprised the training set and the others the test set. The AI model showed an accuracy of 97.8%, sensitivity of 69.2%, a negative predictive value of 99.1%, and a dice similarity coefficient of 61.8%. In the test set, the average amount of pneumothorax was 15%, 16%, and 13% in the gold standard, predicted, and true labels, respectively. The predicted label was not significantly different from the gold standard (
Identifiants
pubmed: 36010174
pii: diagnostics12081823
doi: 10.3390/diagnostics12081823
pmc: PMC9406694
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Chungbuk National University Hospital
ID : 3-202004030-001
Références
Anaesthesist. 2019 May;68(5):309-316
pubmed: 30899972
Respiration. 2008;76(2):121-7
pubmed: 18708734
Anesth Analg. 2016 Sep;123(3):636-40
pubmed: 27537756
Clin Perinatol. 2008 Mar;35(1):273-81, x-xi
pubmed: 18280886
Nat Rev Cancer. 2018 Aug;18(8):500-510
pubmed: 29777175
Radiol Artif Intell. 2021 May 19;3(4):e200172
pubmed: 34350406
Thorac Surg Clin. 2017 Feb;27(1):57-67
pubmed: 27865328
N Engl J Med. 2000 Mar 23;342(12):868-74
pubmed: 10727592
Korean J Thorac Cardiovasc Surg. 2017 Dec;50(6):424-429
pubmed: 29234608
Int J Comput Assist Radiol Surg. 2020 Mar;15(3):425-436
pubmed: 32034633
Interact Cardiovasc Thorac Surg. 2020 Mar 1;30(3):337-345
pubmed: 31858124
Eur Radiol Exp. 2020 Apr 17;4(1):26
pubmed: 32303861
Psychiatry Investig. 2017 Nov;14(6):795-800
pubmed: 29209383
IEEE Trans Med Imaging. 2018 Aug;37(8):1865-1876
pubmed: 29994439
J Clin Anesth. 2018 Mar;45:30-31
pubmed: 29272756
Dis Markers. 2021 Apr 9;2021:8821697
pubmed: 33897912
Thorax. 2010 Aug;65 Suppl 2:ii18-31
pubmed: 20696690
Lancet Respir Med. 2015 Jul;3(7):578-88
pubmed: 26170077
Australas Radiol. 2007 Apr;51(2):196-8
pubmed: 17419871
Crit Care. 2020 Mar 24;24(1):101
pubmed: 32204716
Korean J Thorac Cardiovasc Surg. 2011 Jun;44(3):253-6
pubmed: 22263163
J Thorac Dis. 2019 Nov;11(11):4782-4789
pubmed: 31903268
J Am Med Assoc. 1954 May 1;155(1):24-9
pubmed: 13151882
Am J Emerg Med. 1995 Sep;13(5):532-5
pubmed: 7662057
Nature. 2015 Feb 26;518(7540):529-33
pubmed: 25719670
Chest. 2001 Feb;119(2):590-602
pubmed: 11171742
Respir Med Case Rep. 2018 Feb 28;23:170-172
pubmed: 29719810
Ann Thorac Surg. 2014 Oct;98(4):1461-3
pubmed: 25282215