Emulating Clinical Diagnostic Reasoning for Jaw Cysts with Machine Learning.
artificial intelligence
cysts
diagnosis
machine learning
oral
radiography
surgery
Journal
Diagnostics (Basel, Switzerland)
ISSN: 2075-4418
Titre abrégé: Diagnostics (Basel)
Pays: Switzerland
ID NLM: 101658402
Informations de publication
Date de publication:
14 Aug 2022
14 Aug 2022
Historique:
received:
17
07
2022
revised:
09
08
2022
accepted:
11
08
2022
entrez:
26
8
2022
pubmed:
27
8
2022
medline:
27
8
2022
Statut:
epublish
Résumé
The detection and classification of cystic lesions of the jaw is of high clinical relevance and represents a topic of interest in medical artificial intelligence research. The human clinical diagnostic reasoning process uses contextual information, including the spatial relation of the detected lesion to other anatomical structures, to establish a preliminary classification. Here, we aimed to emulate clinical diagnostic reasoning step by step by using a combined object detection and image segmentation approach on panoramic radiographs (OPGs). We used a multicenter training dataset of 855 OPGs (all positives) and an evaluation set of 384 OPGs (240 negatives). We further compared our models to an international human control group of ten dental professionals from seven countries. The object detection model achieved an average precision of 0.42 (intersection over union (IoU): 0.50, maximal detections: 100) and an average recall of 0.394 (IoU: 0.50-0.95, maximal detections: 100). The classification model achieved a sensitivity of 0.84 for odontogenic cysts and 0.56 for non-odontogenic cysts as well as a specificity of 0.59 for odontogenic cysts and 0.84 for non-odontogenic cysts (IoU: 0.30). The human control group achieved a sensitivity of 0.70 for odontogenic cysts, 0.44 for non-odontogenic cysts, and 0.56 for OPGs without cysts as well as a specificity of 0.62 for odontogenic cysts, 0.95 for non-odontogenic cysts, and 0.76 for OPGs without cysts. Taken together, our results show that a combined object detection and image segmentation approach is feasible in emulating the human clinical diagnostic reasoning process in classifying cystic lesions of the jaw.
Identifiants
pubmed: 36010318
pii: diagnostics12081968
doi: 10.3390/diagnostics12081968
pmc: PMC9406703
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
JAMA. 2016 Dec 13;316(22):2402-2410
pubmed: 27898976
J Biomed Inform. 2011 Jun;44(3):402-12
pubmed: 20093196
Maxillofac Plast Reconstr Surg. 2019 Jan 07;41(1):2
pubmed: 30671423
Clin Oral Investig. 2021 Nov;25(11):6093-6099
pubmed: 33876318
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327
pubmed: 30040631
J Oral Sci. 2008 Jun;50(2):205-12
pubmed: 18587212
Teach Learn Med. 2013;25 Suppl 1:S26-32
pubmed: 24246103
Med Phys. 2020 Jan;47(1):1-4
pubmed: 31663612
Clin Oral Investig. 2016 Jan;20(1):15-22
pubmed: 26250795
Oral Surg Oral Med Oral Pathol Oral Radiol. 2019 Oct;128(4):424-430
pubmed: 31320299
Sci Rep. 2022 Feb 3;12(1):1855
pubmed: 35115624
Eur J Radiol. 2019 Nov;120:108654
pubmed: 31539792
AJR Am J Roentgenol. 2017 Dec;209(6):1374-1380
pubmed: 28898126
J Dent Res. 2022 Jun 9;:220345221100169
pubmed: 35686357
Int J Oral Maxillofac Surg. 2012 Jun;41(6):756-67
pubmed: 22445416
J Clin Med. 2020 Jun 12;9(6):
pubmed: 32545602
Dentomaxillofac Radiol. 2015;44(1):20140224
pubmed: 25263643
N Engl J Med. 2006 Nov 23;355(21):2217-25
pubmed: 17124019
Comput Struct Biotechnol J. 2020 Aug 07;18:2312-2325
pubmed: 32994890
Dentomaxillofac Radiol. 2021 Oct 01;50(7):20200384
pubmed: 34233493
Healthc Inform Res. 2018 Jul;24(3):236-241
pubmed: 30109156
Dentomaxillofac Radiol. 2020 Dec 01;49(8):20200185
pubmed: 32574113
Laryngoscope. 1998 Feb;108(2):280-3
pubmed: 9473082