Characterization of Botanical Origin of Italian Honey by Carbohydrate Composition and Volatile Organic Compounds (VOCs).
Italian honey
PLS-DA
apple–dandelion
carbohydrates
melissopalynological analysis
Journal
Foods (Basel, Switzerland)
ISSN: 2304-8158
Titre abrégé: Foods
Pays: Switzerland
ID NLM: 101670569
Informations de publication
Date de publication:
13 Aug 2022
13 Aug 2022
Historique:
received:
30
06
2022
revised:
09
08
2022
accepted:
11
08
2022
entrez:
26
8
2022
pubmed:
27
8
2022
medline:
27
8
2022
Statut:
epublish
Résumé
Honey is a natural sweetener constituted by numerous macro- and micronutrients. Carbohydrates are the most representative, with glucose and fructose being the most abundant. Minor honey components like volatile organic compounds (VOCs), minerals, vitamins, amino acids are able to confer honey-specific properties and are useful to characterize and differentiate between honey varieties according to the botanical origin. The present work describes the chemical characterization of honeys of different botanical origin (multifloral, acacia, apple-dandelion, rhododendron, honeydew, and chestnut) produced and collected by beekeepers in the Trentino Alto-Adige region (Italy). Melissopalynological analysis was conducted to verify the botanical origin of samples and determine the frequency of different pollen families. The carbohydrate composition (fourteen sugars) and the profile of VOCs were evaluated permitting to investigate the relationship between pollen composition and the chemical profile of honey. Statistical analysis, particularly partial least squares discriminant analysis (PLS-DA), demonstrates the importance of classifying honey botanical origin on the basis of effective pollen composition, which directly influences honey's biochemistry, in order to correctly define properties and value of honeys.
Identifiants
pubmed: 36010441
pii: foods11162441
doi: 10.3390/foods11162441
pmc: PMC9407073
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Food Chem. 2014 Mar 1;146:548-57
pubmed: 24176380
J AOAC Int. 2017 Jul 1;100(4):840-851
pubmed: 28527181
Compr Rev Food Sci Food Saf. 2010 Nov;9(6):620-634
pubmed: 33467823
Nucleic Acids Res. 2021 Jul 2;49(W1):W388-W396
pubmed: 34019663
Chem Cent J. 2007 Jun 07;1:14
pubmed: 17880749
Food Chem. 2011 Dec 1;129(3):1030-6
pubmed: 25212333
J Sci Food Agric. 1977 May;28(5):443-56
pubmed: 875373
Molecules. 2010 Apr 22;15(4):2911-24
pubmed: 20428087
J Agric Food Chem. 1998 Jan 19;46(1):141-144
pubmed: 10554209
Curr Med Chem. 2013;20(5):621-38
pubmed: 23298140
Food Chem. 2021 Jan 30;336:127758
pubmed: 32784062
J Agric Food Chem. 2013 Feb 27;61(8):1747-55
pubmed: 23360363
Chem Biodivers. 2013 Aug;10(8):1549-58
pubmed: 23939803
Anal Bioanal Chem. 2004 Oct;380(4):698-705
pubmed: 15448965
Food Chem. 2018 Apr 25;246:32-40
pubmed: 29291855
Nutr Metab (Lond). 2012 Jun 20;9:61
pubmed: 22716101
Arh Hig Rada Toksikol. 2015 Dec;66(4):233-41
pubmed: 26751854
J Food Sci Technol. 2020 Mar;57(3):1167-1182
pubmed: 32123438
Z Naturforsch C J Biosci. 2003 Nov-Dec;58(11-12):797-803
pubmed: 14713153
Anal Bioanal Chem. 2020 Sep;412(22):5217-5227
pubmed: 32488387
Food Chem. 2020 Feb 1;305:125457
pubmed: 31505414
Metabolites. 2021 Jan 09;11(1):
pubmed: 33435351
Food Chem. 2014 Apr 15;149:84-90
pubmed: 24295680
Compr Rev Food Sci Food Saf. 2017 Sep;16(5):1072-1100
pubmed: 33371614
J Agric Food Chem. 2002 Apr 24;50(9):2633-7
pubmed: 11958634