Prenatal exposure to valproic acid causes allodynia associated with spinal microglial activation.


Journal

Neurochemistry international
ISSN: 1872-9754
Titre abrégé: Neurochem Int
Pays: England
ID NLM: 8006959

Informations de publication

Date de publication:
11 2022
Historique:
received: 03 06 2022
revised: 14 08 2022
accepted: 19 08 2022
pubmed: 27 8 2022
medline: 14 10 2022
entrez: 26 8 2022
Statut: ppublish

Résumé

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and social interaction and the presence of restricted, repetitive behaviors. Additionally, difficulties in sensory processing commonly occur in ASD. Sensory abnormalities include heightened or reduced sensitivity to pain, but the mechanism underlying sensory phenotypes in ASD remain unknown. Emerging evidence suggests that microglia play an important role in forming and refining neuronal circuitry, and thus contribute to neuronal plasticity and nociceptive signaling. In the present study, we investigated the age-dependent tactile sensitivity in an animal model of ASD induced by prenatal exposure to valproic acid (VPA) and subsequently assessed the involvement of microglia in the spinal cord in pain processing. Pregnant ICR (CD1) mice were intraperitoneally injected with either saline or VPA (500 mg/kg) on embryonic day 12.5. Male offspring of VPA-treated mothers showed mechanical allodynia at both 4 and 8 weeks of age. In the spinal cord dorsal horn in prenatally VPA-treated mice, the numbers and staining intensities of ionized calcium-binding adapter molecule 1-positive cells were increased and the cell bodies became enlarged, indicating microglial activation. Treatment with PLX3397, a colony-stimulating factor 1 receptor inhibitor, for 10 days resulted in a decreased number of spinal microglia and attenuated mechanical allodynia in adult mice prenatally exposed to VPA. Additionally, intrathecal injection of Mac-1-saporin, a saporin-conjugated anti-CD11b antibody to deplete microglia, abolished mechanical allodynia. These findings suggest that prenatal VPA treatment causes allodynia and that spinal microglia contribute to the increased nociceptive responses.

Identifiants

pubmed: 36027995
pii: S0197-0186(22)00140-1
doi: 10.1016/j.neuint.2022.105415
pii:
doi:

Substances chimiques

Valproic Acid 614OI1Z5WI
Macrophage Colony-Stimulating Factor 81627-83-0
Saporins EC 3.2.2.22
Calcium SY7Q814VUP

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

105415

Informations de copyright

Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors declare that they have no conflicts of interest.

Auteurs

Eiji Imado (E)

Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.

Samnang Sun (S)

School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; Faculty of Odonto-Stomatology, University of Health Sciences, #73, Monivong Blvd., Sangkat Sras Chak, Khan Daun Penh, Phnom Penh, 12201, Cambodia.

Abrar Rizal Abawa (AR)

School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; Faculty of Dental Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No. 47, Surabaya, East Java, 60132, Indonesia.

Takeru Tahara (T)

Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.

Takahiro Kochi (T)

Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.

Tran Ngoc Bao Huynh (TNB)

School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; Faculty of Odonto-Stomatology, Hong Bang International University, 215 Dien Bien Phu Street, Ward 15, Binh Thanh District, Ho Chi Minh City, Viet Nam.

Satoshi Asano (S)

Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.

Shigeru Hasebe (S)

Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.

Yoki Nakamura (Y)

Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.

Kazue Hisaoka-Nakashima (K)

Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.

Yaichiro Kotake (Y)

Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.

Masahiro Irifune (M)

Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.

Kazuhiro Tsuga (K)

School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.

Kazuhiro Takuma (K)

Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan.

Norimitsu Morioka (N)

Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.

Norikazu Kiguchi (N)

Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Wakayama, 640-8156, Japan.

Yukio Ago (Y)

Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan; Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan. Electronic address: yukioago@hiroshima-u.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH