Multimodal deep learning model on interim [


Journal

European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774

Informations de publication

Date de publication:
Jan 2023
Historique:
received: 14 03 2022
accepted: 13 07 2022
revised: 30 05 2022
pubmed: 28 8 2022
medline: 20 12 2022
entrez: 27 8 2022
Statut: ppublish

Résumé

The prediction of primary treatment failure (PTF) is necessary for patients with diffuse large B-cell lymphoma (DLBCL) since it serves as a prominent means for improving front-line outcomes. Using interim Initially, 205 DLBCL patients undergoing interim [ The final model with contrastive objective optimization, named the contrastive hybrid learning model, performed best, with an accuracy of 91.22% and an area under the receiver operating characteristic curve (AUC) of 0.926, in the primary dataset. In the external dataset, its accuracy and AUC remained at 88.64% and 0.925, respectively, indicating its good generalization ability. The proposed model achieved good performance, validated the predictive value of interim PET/CT, and holds promise for directing individualized clinical treatment. • The proposed multimodal models achieved accurate prediction of primary treatment failure in DLBCL patients. • Using an appropriate feature-level fusion strategy can make the same class close to each other regardless of the modal heterogeneity of the data source domain and positively impact the prediction performance. • Deep learning validated the predictive value of interim PET/CT in a way that exceeded human capabilities.

Identifiants

pubmed: 36029345
doi: 10.1007/s00330-022-09031-8
pii: 10.1007/s00330-022-09031-8
doi:

Substances chimiques

Fluorodeoxyglucose F18 0Z5B2CJX4D

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

77-88

Subventions

Organisme : National Natural Science Foundation of China
ID : 81974276
Organisme : National Natural Science Foundation of China
ID : 81830007
Organisme : National Natural Science Foundation of China
ID : 81520108003
Organisme : National Natural Science Foundation of China
ID : 81670176
Organisme : National Natural Science Foundation of China
ID : 82070204

Informations de copyright

© 2022. The Author(s), under exclusive licence to European Society of Radiology.

Références

Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249
doi: 10.3322/caac.21660
Feugier P, Van Hoof A, Sebban C et al (2005) Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol 23:4117–4126
doi: 10.1200/JCO.2005.09.131
Crump M, Neelapu SS, Farooq U et al (2017) Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood 130(16):1800–1808
doi: 10.1182/blood-2017-03-769620
Gisselbrecht C, Neste EVD (2018) How I manage patients with relapsed/refractory diffuse large B cell lymphoma. Br J Haematol 182:633–643
doi: 10.1111/bjh.15412
Locke FL, Ghobadi A, Jacobson CA et al (2019) Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol 20(1):31–42
doi: 10.1016/S1470-2045(18)30864-7
Kalakonda N, Maerevoet M, Cavallo F et al (2020) Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): a single-arm, multinational, multicentre, open-label, phase 2 trial. Lancet Haematol 7(7):e511–e522
doi: 10.1016/S2352-3026(20)30120-4
Hawkes EA, Barraclough A, Sehn LH (2022) Limited-stage diffuse large B-cell lymphoma. Blood 139(6):822–834
doi: 10.1182/blood.2021013998
Lv X, Wang Q, Ge X, Xue C, Liu X (2021) Application of high-throughput gene sequencing in lymphoma. Exp Mol Pathol 119:104606
doi: 10.1016/j.yexmp.2021.104606
Sehn LH, Berry B, Chhanabhai M et al (2007) The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood 190(6):1857–1861
doi: 10.1182/blood-2006-08-038257
Xu-Monette ZY, Wu L, Visco C et al (2012) Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an international DLBCL rituximab-CHOP consortium program study. Blood 120(19):3986–3996
doi: 10.1182/blood-2012-05-433334
Juweid ME, Stroobants S, Hoekstra OS et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 25(5):571–578
doi: 10.1200/JCO.2006.08.2305
Cheson BD, Pfistner B, Juweid ME et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25(5):579–586
doi: 10.1200/JCO.2006.09.2403
Cheson BD (2011) Role of functional imaging in the management of lymphoma. J Clin Oncol 29(14):1844–1854
doi: 10.1200/JCO.2010.32.5225
Jerusalem G, Beguin Y, Fassotte MF et al (2000) Persistent tumor [
Spaepen K, Stroobants S, Dupont P et al (2002) Early restaging positron emission tomography with (18)F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin's lymphoma. Ann Oncol 13(9):1356–1363
doi: 10.1093/annonc/mdf256
Kirienko M, Biroli M, Gelardi F, Seregni E, Chiti A, Sollini M (2021) Deep learning in nuclear medicine—focus on CNN-based approaches for PET/CT and PET/MR: where do we stand? Clin Transl Imaging 9:37–55
doi: 10.1007/s40336-021-00411-6
Roth HR, Lu L, Seff A et al (2014) A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. Med Image Comput Comput Assist Interv 17:520–527
Wallis D, Soussan M, Lacroix M, Akl P, Duboucher C, Buvat I (2022) An [18F]FDG-PET/CT deep learning method for fully automated detection of pathological mediastinal lymph nodes in lung cancer patients. Eur J Nucl Med Mol Imaging 49:881–888
doi: 10.1007/s00259-021-05513-x
Bi L, Kim J, Kumar A, Wen L, Feng D, Fulham M (2017) Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies. Comput Med Imaging Graph 60:3–10
doi: 10.1016/j.compmedimag.2016.11.008
Hu H, Shen L, Zhou T, Decazes P, Vera P, Ruan S (2020) Lymphoma segmentation in PET images based on multi-view and Conv3D fusion strategy. IEEE 17th International Symposium on Biomedical Imaging (ISBI):1197-1200
Revailler W, Cottereau AS, Rossi C et al (2022) Deep learning approach to automatize TMTV calculations regardless of segmentation methodology for major FDG-avid lymphomas. Diagnostics (Basel) 12(2):417
doi: 10.3390/diagnostics12020417
Sadik M, Lind E, Polymeri E, Enqvist O, Ulén J, Trägårdh E (2019) Automated quantification of reference levels in liver and mediastinal blood pool for the Deauville therapy response classification using FDG-PET/CT in Hodgkin and non-Hodgkin lymphomas. Clin Physiol Funct Imaging 39(1):78–84
doi: 10.1111/cpf.12546
Capobianco N, Meignan M, Cottereau AS et al (2021) Deep-learning [
Seidler M, Forghani B, Reinhold C et al (2019) Dual-energy CT texture analysis with machine learning for the evaluation and characterization of cervical lymphadenopathy. Comput Struct Biotechnol J 17:1009–1015
doi: 10.1016/j.csbj.2019.07.004
Ganeshan B, Miles KA, Babikir S et al (2017) CT-based texture analysis potentially provides prognostic information complementary to interim FDG-PET for patients with Hodgkin’s and aggressive non-Hodgkin’s lymphomas. Eur Radiol 27:1012–1020
doi: 10.1007/s00330-016-4470-8
Santiago R, Jimenez JO, Forghani R et al (2021) CT-based radiomics model with machine learning for predicting primary treatment failure in diffuse large B-cell Lymphoma. Transl Oncol 14(10):101188
doi: 10.1016/j.tranon.2021.101188
Zhou T, Ruan S, Canu S et al (2019) A review: Deep learning for medical image segmentation using multi-modality fusion. Array 3:100004
doi: 10.1016/j.array.2019.100004
Li K, Zhang R, Cai W (2021) Deep learning convolutional neural network (DLCNN): unleashing the potential of
Jin C, Yu H, Ke J et al (2021) Predicting treatment response from longitudinal images using multi-task deep learning. Nat Commun 12:1851
doi: 10.1038/s41467-021-22188-y
Kumar A, Fulham M, Feng D, Kim J (2020) Co-learning feature fusion maps from PET-CT images of lung cancer. IEEE Trans Med Imaging 39(1):204–217
doi: 10.1109/TMI.2019.2923601
Donahue J, Hendricks LA, Rohrbach M et al (2017) Long-term recurrent convolutional networks for visual recognition and description. IEEE Trans Pattern Anal Mach Intell 39(4):677–691
doi: 10.1109/TPAMI.2016.2599174
Chen T, Kornblith S, Norouzi M, Hinton G (2020) A simple framework for contrastive learning of visual representations. Preprint arXiv:2002.05709
Zhong Z, Kim Y, Plichta K et al (2019) Simultaneous co-segmentation of tumors in PET-CT images using deep fully convolutional networks. Med Phys 46(2):619–633
doi: 10.1002/mp.13331
Zhao X, Li L, Lu W, Tan S (2018) Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network. Phys Med Biol 64(1):015011
doi: 10.1088/1361-6560/aaf44b
Humphries SM, Notary AM, Centeno JP et al (2019) Deep learning enables automatic classification of emphysema pattern at CT. Radiology 294(2):434–444
doi: 10.1148/radiol.2019191022
Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
doi: 10.1162/neco.1997.9.8.1735
Lu N, Wu Y, Feng L, Song J (2019) Deep learning for fall detection: three-dimensional CNN combined with LSTM on video kinematic data. IEEE J Biomed Health Inform 23(1):314–323
doi: 10.1109/JBHI.2018.2808281
Abadi M, Barham P, Chen J, et al (2016) TensorFlow: a system for large-scale machine learning. Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation:265-283
Chetlur A, Woolley C, Vandermersch P, et al (2014) cuDNN: efficient primitives for deep learning. Preprint arXiv:1410.0759
Zhou B, Khosla A, Lapedriza A, Oliva A, Torrralba A (2016) Learning deep features for discriminative localization. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR):2921-2929
Du D, Feng H, Lv W et al (2020) Machine learning methods for optimal radiomics-based differentiation between recurrence and inflammation: application to nasopharyngeal carcinoma post-therapy PET/CT images. Mol Imaging Biol 22:730–738
doi: 10.1007/s11307-019-01411-9
Yuan C, Zhang M, Huang X et al (2021) Diffuse large B-cell lymphoma segmentation in PET-CT images via hybrid learning for feature fusion. Med Phys 48(7):3665–3678
doi: 10.1002/mp.14847
Peng Y, Bi L, Guo Y, Feng D, Fulham M, Kim J (2019) Deep multi-modality collaborative learning for distant metastases predication in PET-CT soft-tissue sarcoma studies. Annu Int Conf IEEE Eng Med Biol Soc:3658-3688
Zhang W, Li R, Deng H et al (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. Neuroimage 108:214–224
Zhong Z, Kim Y, Zhou L, et al (2018) 3D fully convolutional networks for co-segmentation of tumors on PET-CT images. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI):228-231

Auteurs

Cheng Yuan (C)

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200040, China.

Qing Shi (Q)

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Xinyun Huang (X)

Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Li Wang (L)

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Yang He (Y)

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.

Biao Li (B)

Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. lb10363@rjh.com.cn.

Weili Zhao (W)

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. zhao.weili@yahoo.com.

Dahong Qian (D)

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200040, China. dahong.qian@sjtu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH