Transient neurochemical features of the perigeniculate neurons during early postnatal development of the cat.


Journal

The Journal of comparative neurology
ISSN: 1096-9861
Titre abrégé: J Comp Neurol
Pays: United States
ID NLM: 0406041

Informations de publication

Date de publication:
Dec 2022
Historique:
revised: 09 08 2022
received: 29 11 2021
accepted: 11 08 2022
pubmed: 30 8 2022
medline: 22 10 2022
entrez: 29 8 2022
Statut: ppublish

Résumé

The thalamic reticular nucleus receives axons from the thalamic sensory nuclei and the cerebral cortex. The visual part of this nucleus in carnivores is the perigeniculate nucleus located dorsal to the lateral geniculate nucleus. The perigeniculate nucleus participates in the modulation of visual processing and in the transition of synchronized slow rhythmicity during sleep into desynchronized high-frequency activity during arousal and consists of inhibitory neurons. The main neurochemical markers for perigeniculate neurons are glutamic acid decarboxylase and Ca

Identifiants

pubmed: 36036192
doi: 10.1002/cne.25402
doi:

Substances chimiques

Calbindin 2 0
Parvalbumins 0
Glutamate Decarboxylase EC 4.1.1.15
Calbindins 0
S100 Calcium Binding Protein G 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3193-3208

Informations de copyright

© 2022 Wiley Periodicals LLC.

Références

Ahlsén, G., Lindström, S., & Sybirska, E. (1978). Subcortical axon collaterals of principal cells in the lateral geniculate body of the cat. Brain Research, 156(1), 106-109. https://doi.org/10.1016/0006-8993(78)90084-7
Arai, R., Jacobowitz, D. M., & Deura, S. (1994). Distribution of calretinin, calbindin-D28k, and parvalbumin in the rat thalamus. Brain Research Bulletin, 33(5), 595-614. https://doi.org/10.1016/0361-9230(94)90086-8
Baldauf, Z. B. B. (2010). Dual chemoarchitectonic lamination of the visual sector of the thalamic reticular nucleus. Neuroscience, 165(3), 801-818. https://doi.org/10.1016/j.neuroscience.2009.11.010
Bjerke, I. E., Yates, S. C., Laja, A., Witter, M. P., Puchades, M. A., Bjaalie, J. G., & Leergaard, T. B. (2021). Densities and numbers of calbindin and parvalbumin positive neurons across the rat and mouse brain. IScience, 24(1), 101906. https://doi.org/10.1016/j.isci.2020.101906
Bragg, E. M., Fairless, E. A., Liu, S., & Briggs, F. (2017). Morphology of visual sector thalamic reticular neurons in the macaque monkey suggests retinotopically specialized, parallel stream-mixed input to the lateral geniculate nucleus. Journal of Comparative Neurology, 525(5), 1273-1290. https://doi.org/10.1002/cne.24134
Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E., & McCarley, R. W. (2012). Control of sleep and wakefulness. Physiological Reviews, 92(3), 1087-1187. https://doi.org/10.1152/physrev.00032.2011
Celio, M. R. R. (1990). Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience, 35(2), 375-475. https://doi.org/10.1016/0306-4522(90)90091-H
Cox, C. L., & Sherman, S. M. (1999). Glutamate inhibits thalamic reticular neurons. Journal of Neuroscience, 19(15), 6694-6699. https://doi.org/10.1523/jneurosci.19-15-06694.1999
Crabtree, J. W. (2018). Functional diversity of thalamic reticular subnetworks. Frontiers in Systems Neuroscience, 12, https://doi.org/10.3389/fnsys.2018.00041
Crabtree, J. W., Lodge, D., Bashir, Z. I., & Isaac, J. T. R. (2013). GABA A, NMDA and mGlu2 receptors tonically regulate inhibition and excitation in the thalamic reticular nucleus. European Journal of Neuroscience, 37(6), 850-859. https://doi.org/10.1111/ejn.12098
del Río, J. A., Martinez, A., Fonseca, M., Auladell, C., & Soriano, E. (1995). Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with calretinin antibody. Cerebral Cortex, 5(1), 13-21. https://doi.org/10.1093/cercor/5.1.13
Demeulemeester, H., Vandesande, F., Orban, G. A., Heizmann, C. W., & Pochet, R. (1989). Calbindin D-28K and parvalbumin immunoreactivity is confined to two separate neuronal subpopulations in the cat visual cortex, whereas partial coexistence is shown in the dorsal lateral geniculate nucleus. Neuroscience Letters, 99(1-2), 6-11. https://doi.org/10.1016/0304-3940(89)90255-3
Domich, L., Oakson, G., Deschênes, M., & Steriade, M. (1987). Thalamic and cortical spindles during early ontogenesis in kittens. Developmental Brain Research, 31(1), 140-142. https://doi.org/10.1016/0165-3806(87)90093-9
Dubin, M. W., & Cleland, B. G. (1977). Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. Journal of Neurophysiology, 40(2), 410-427. https://doi.org/10.1152/jn.1977.40.2.410
Fitzgibbon, T. (2002). Organization of reciprocal connections between the perigeniculate nucleus and dorsal lateral geniculate nucleus in the cat: A transneuronal transport study. Visual Neuroscience, 19(4), 511-520. https://doi.org/10.1017/S0952523802194120
Fitzgibbon, T. (2007). Do first order and higher order regions of the thalamic reticular nucleus have different developmental timetables? Experimental Neurology, 204(1), 339-354. https://doi.org/10.1016/j.expneurol.2006.11.012
FitzGibbon, T. (2006). Does the development of the perigeniculate nucleus support the notion of a hierarchical progression within the visual pathway? Neuroscience, 140(2), 529-546. https://doi.org/10.1016/j.neuroscience.2006.02.038
Fitzpatrick, D., Penny, G. R., & Schmechel, D. E. (1984). Glutamic acid decarboxylase-immunoreactive neurons and terminals in the lateral geniculate nucleus of the cat. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 4(7), 1809-1829. https://doi.org/10.1523/JNEUROSCI.04-07-01809.1984
Frassoni, C., Arcelli, P., Selvaggio, M., & Spreafico, R. (1998). Calretinin immunoreactivity in the developing thalamus of the rat: A marker of early generated thalamic cells. Neuroscience, 83(4), 1203-1214. https://doi.org/10.1016/S0306-4522(97)00443-0
Frassoni, C., Radici, C., Spreafico, R., & de Curtis, M. (1998). Calcium-binding protein immunoreactivity in the piriform cortex of the guinea-pig: Selective staining of subsets of non-gabaergic neurons by calretinin. Neuroscience, 83(1), 229-237. https://doi.org/10.1016/S0306-4522(97)00368-0
Friedlander, M. J., Lin, C. S., Stanford, L. R., & Sherman, S. M. (1981). Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. Journal of Neurophysiology, 46(1), 80-129. https://doi.org/10.1152/jn.1981.46.1.80
Gonzalo-Ruiz, A., Sanz, J. M., & Lieberman, A. R. (1996). Immunohistochemical studies of localization and co-localization of glutamate, aspartate and GABA in the anterior thalamic nuclei, retrosplenial granular cortex, thalamic reticular nucleus and mammillary nuclei of the rat. Journal of Chemical Neuroanatomy, 12(2), 77-84. https://doi.org/10.1016/S0891-0618(96)00180-9
Gritti, I., Manns, I. D., Mainville, L., & Jones, B. E. (2003). Parvalbumin, calbindin, or calretinin in cortically projecting and GABAergic, cholinergic, or glutamatergic basal forebrain neurons of the rat. The Journal of Comparative Neurology, 458(1), 11-31. https://doi.org/10.1002/cne.10505
Guillery, R. W., & Harting, J. K. (2003). Structure and connections of the thalamic reticular nucleus: Advancing views over half a century. Journal of Comparative Neurology, 463(4), 360-371. https://doi.org/10.1002/cne.10738
Hickey, T. L., & Hitchcock, P. F. (1984). Genesis of neurons in the dorsal lateral geniculate nucleus of the cat. The Journal of Comparative Neurology, 228(2), 186-199. https://doi.org/10.1002/cne.902280205
Houser, C. R., Vaughn, J. E., Barber, R. P., & Roberts, E. (1980). GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Research, 200(2), 341-354. https://doi.org/10.1016/0006-8993(80)90925-7
Huntley, G. W., & Jones, E. G. (1990). Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins. Journal of Neurocytology, 19(2), 200-212. https://doi.org/10.1007/BF01217298
Issa, N. P., Trachtenberg, J. T., Chapman, B., Zahs, K. R., & Stryker, M. P. (1999). The critical period for ocular dominance plasticity in the ferret's visual cortex. The Journal of Neuroscience, 19(16), 6965-6978.
Jiang, M., & Swann, J. (1997). Expression of calretinin in diverse neuronal populations during development of rat hippocampus. Neuroscience, 81(4), 1137-1154. https://doi.org/10.1016/S0306-4522(97)00231-5
Kim, U., Bal, T., & McCormick, D. A. (1995). Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. Journal of Neurophysiology, 74(3), 1301-1323. https://doi.org/10.1152/jn.1995.74.3.1301
Kimura, A., Yokoi, I., Imbe, H., Donishi, T., & Kaneoke, Y. (2012). Distinctions in burst spiking between thalamic reticular nucleus cells projecting to the dorsal lateral geniculate and lateral posterior nuclei in the anesthetized rat. Neuroscience, 226, 208-226. https://doi.org/10.1016/j.neuroscience.2012.09.016
Kosaka, T., Kosaka, K., Nakayama, T., Hunziker, W., & Heizmann, C. W. (1993). Axons and axon terminals of cerebellar Purkinje cells and basket cells have higher levels of parvalbumin immunoreactivity than somata and dendrites: Quantitative analysis by immunogold labeling. Experimental Brain Research, 93(3), 483-491. https://doi.org/10.1007/BF00229363
Lee, K., & McCormick, D. (1997). Modulation of spindle oscillations by acetylcholine, cholecystokinin and 1S,3R-ACPD in the ferret lateral geniculate and perigeniculate nuclei in vitro. Neuroscience, 77(2), 335-350. https://doi.org/10.1016/S0306-4522(96)00481-2
Leranth, C., & Kiss, J. (1996). A population of supramammillary area calretinin neurons terminating on medial septal area cholinergic and lateral septal area calbindin-containing cells are aspartate/glutamatergic. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 16(23), 7699-7710. https://doi.org/10.1523/JNEUROSCI.16-23-07699.1996
Martinez-Gonzalez, C., Wang, H.-L., Micklem, B. R., Bolam, J. P., & Mena-Segovia, J. (2012). Subpopulations of cholinergic, GABAergic and glutamatergic neurons in the pedunculopontine nucleus contain calcium-binding proteins and are heterogeneously distributed. European Journal of Neuroscience, 35(5), 723-734. https://doi.org/10.1111/j.1460-9568.2012.08002.x
McAlonan, K., Cavanaugh, J., & Wurtz, R. H. (2008). Guarding the gateway to cortex with attention in visual thalamus. Nature, 456(7220), 391-394. https://doi.org/10.1038/nature07382
McConnell, S., Ghosh, A., & Shatz, C. (1994). Subplate pioneers and the formation of descending connections from cerebral cortex. The Journal of Neuroscience, 14(4), 1892-1907. https://doi.org/10.1523/JNEUROSCI.14-04-01892.1994
McCormick, D. A., Trent, F., & Ramoa, A. (1995). Postnatal development of synchronized network oscillations in the ferret dorsal lateral geniculate and perigeniculate nuclei. The Journal of Neuroscience, 15(8), 5739-5752. https://doi.org/10.1523/JNEUROSCI.15-08-05739.1995
McCormick, D. A., & von Krosigk, M. (1992). Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proceedings of the National Academy of Sciences, 89(7), 2774-2778. https://doi.org/10.1073/pnas.89.7.2774
McHaffie, J., Anstrom, K., Gabriele, M., & Stein, B. (2001). Distribution of the calcium-binding proteins calbindin D-28K and parvalbumin in the superior colliculus of adult and neonatal cat and rhesus monkey. Experimental Brain Research, 141(4), 460-470. https://doi.org/10.1007/s00221-001-0908-5
Merkulyeva, N. S., Mikhalkin, A. A., & Nikitina, N. I. (2020). Characteristics of the neurochemical state of neurons in the mesencephalic nucleus of the trigeminal nerve in cats. Neuroscience and Behavioral Physiology, 50(4), 511-515. https://doi.org/10.1007/s11055-020-00927-w
Merkulyeva, N. S., Mikhalkin, A., & Zykin, P. (2018). Early postnatal development of the lamination in the lateral geniculate nucleus A-layers in cats. Cellular and Molecular Neurobiology, 38(5), 1137-1143. https://doi.org/10.1007/s10571-018-0585-6
Merkulyeva, N. S., Veshchitskii, A., Makarov, F., Gerasimenko, Y., & Musienko, P. (2016). Distribution of 28 kDa calbindin-immunopositive neurons in the cat spinal cord. Frontiers in Neuroanatomy, 9, 166. https://doi.org/10.3389/fnana.2015.00166
Mitrofanis, J. (1992). Calbindin immunoreactivity in a subset of cat thalamic reticular neurons. Journal of Neurocytology, 21(7), 495-505. https://doi.org/10.1007/BF01186953
Mitrofanis, J. (1994). Development of the thalamic reticular nucleus in ferrets with special reference to the perigeniculate and perireticular cell groups. European Journal of Neuroscience, 6(2), 253-263. https://doi.org/10.1111/j.1460-9568.1994.tb00268.x
Mize, R. R. (1999). Calbindin 28 kD and parvalbumin immunoreactive neurons receive different patterns of synaptic input in the cat superior colliculus. Brain Research, 843(1-2), 25-35. https://doi.org/10.1016/S0006-8993(99)01847-8
Montero, V. M. (1989). The GABA-immunoreactive neurons in the interlaminar regions of the cat lateral geniculate nucleus: Light and electron microscopic observations. Experimental Brain Research, 75(3), 497-512. https://doi.org/10.1007/BF00249901
Montero, V. M., & Singer, W. (1984). Ultrastructure and synaptic relations of neural elements containing glutamic acid decarboxylase (GAD) in the perigeniculate nucleus of the cat. Experimental Brain Research, 56(1), 115-125. https://doi.org/10.1007/BF00237447
Mullen, R. J., Buck, C. R., & Smith, A. M. (1992). NeuN, a neuronal specific nuclear protein in vertebrates. Development (Cambridge, England), 116(1), 201-211. https://doi.org/10.1242/dev.116.1.201
Murakami, D. M., Condo, G. J., & Wilson, P. D. (1987). The development of neurons in the cat perigeniculate nucleus and reticular nucleus of the thalamus. Brain Research, 432(2), 225-237. https://doi.org/10.1016/0165-3806(87)90047-2
Murphy, P., & Sillito, A. (1996). Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. The Journal of Neuroscience, 16(3), 1180-1192. https://doi.org/10.1523/JNEUROSCI.16-03-01180.1996
Ohara, P. T., Sefton, A. J., & Lieberman, A. R. (1980). Mode of termination of afferents from the thalamic reticular nucleus in the dorsal lateral geniculate nucleus of the rat. Brain Research, 197(2), 503-506. https://doi.org/10.1016/0006-8993(80)91136-1
Ottersen, O. P., & Storm-Mathisen, J. (1984). Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. The Journal of Comparative Neurology, 229(3), 374-392. https://doi.org/10.1002/cne.902290308
Palestini, M., Guegan, M., Saavedra, H., Thomasset, M., & Batini, C. (1993). Glutamate, GABA, calbindin-D28k and parvalbumin immunoreactivity in the pulvinar-lateralis posterior complex of the cat: Relation to the projection to the Clare-Bishop area. Neuroscience Letters, 160(1), 89-92. https://doi.org/10.1016/0304-3940(93)90920-G
Parnavelas, J. G., & Chatzissavidou, A. (1981). The development of the thalamic projections to layer I of the visual cortex of the rat. Anatomy and Embryology, 163(1), 71-75. https://doi.org/10.1007/BF00315771
Pillay, S., Bhagwandin, A., Bertelsen, M. F., Patzke, N., Engler, G., Engel, A. K., & Manger, P. R. (2021). The diencephalon of two carnivore species: The feliform banded mongoose and the caniform domestic ferret. Journal of Comparative Neurology, 529(1), 52-86. https://doi.org/10.1002/cne.25036
Rose, J. E. (1942). The ontogenetic development of the rabbit's diencephalon. The Journal of Comparative Neurology, 77(1), 61-129. https://doi.org/10.1002/cne.900770105
Sanchez-Vives, M. V., Bal, T., Kim, U., Von Krosigk, M., & McCormick, D. A. (1996). Are the interlaminar zones of the ferret dorsal lateral geniculate nucleus actually part of the perigeniculate nucleus? Journal of Neuroscience, 16(19), 5923-5941. https://doi.org/10.1523/jneurosci.16-19-05923.1996
Sarnat, H. B., Nochlin, D., & Born, D. E. (1998). Neuronal nuclear antigen (NeuN): A marker of neuronal maturation in early human fetal nervous system. Brain & Development, 20(2), 88-94. https://doi.org/10.1016/S0387-7604(97)00111-3
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. https://doi.org/10.1038/nmeth.2019
Sengpiel, F., & Kind, P. C. (2002). The role of activity in development of the visual system. Current Biology, 12(23), R818-R826. https://doi.org/10.1016/S0960-9822(02)01318-0
Sherman, S. M., & Guillery, R. W. (2002). The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357(1428), 1695-1708. https://doi.org/10.1098/rstb.2002.1161
Sherman, S. M., & Koch, C. (1986). The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research, 63(1), 1-20. https://doi.org/10.1007/BF00235642
Shotwell, S., Shatz, C., & Luskin, M. (1986). Development of glutamic acid decarboxylase immunoreactivity in the cat's lateral geniculate nucleus. The Journal of Neuroscience, 6(5), 1410-1423. https://doi.org/10.1523/JNEUROSCI.06-05-01410.1986
Snider, R. S., & Niemer, W. T. (1961). A stereotaxic atlas of the cat brain. The University of Chicago Press.
Soares, J. G. M., Botelho, E. P., & Gattass, R. (2001). Distribution of calbindin, parvalbumin and calretinin in the lateral geniculate nucleus and superior colliculus in Cebus apella monkeys. Journal of Chemical Neuroanatomy, 22(3), 139-146. https://doi.org/10.1016/S0891-0618(01)00123-5
Soto-Sánchez, C., Wang, X., Vaingankar, V., Sommer, F. T., & Hirsch, J. A. (2017). Spatial scale of receptive fields in the visual sector of the cat thalamic reticular nucleus. Nature Communications, 8(1), 800. https://doi.org/10.1038/s41467-017-00762-7
Steriade, M. (1996). Arousal-Revisiting the reticular activating system. Science, 272(5259), 225-225. https://doi.org/10.1126/science.272.5259.225
Steriade, M., & Deschenes, M. (1984). The thalamus as a neuronal oscillator. Brain Research Reviews, 8(1), 1-63. https://doi.org/10.1016/0165-0173(84)90017-1
Steriade, M., Pare, D., Bouhassira, D., Deschenes, M., & Oakson, G. (1989). Phasic activation of lateral geniculate and perigeniculate thalamic neurons during sleep with ponto-geniculo-occipital waves. The Journal of Neuroscience, 9(7), 2215-2229. https://doi.org/10.1523/JNEUROSCI.09-07-02215.1989
Stichel, C. C., Singer, W., & Heizmann, C. W. (1988). Light and electron microscopic immunocytochemical localization of parvalbumin in the dorsal lateral geniculate nucleus of the cat: Evidence for coexistence with GABA. The Journal of Comparative Neurology, 268(1), 29-37. https://doi.org/10.1002/cne.902680104
Sur, M., Frost, D. O., & Hockfield, S. (1988). Expression of a surface-associated antigen on Y-cells in the cat lateral geniculate nucleus is regulated by visual experience. The Journal of Neuroscience, 8(3), 874-882. https://doi.org/10.1523/JNEUROSCI.08-03-00874.1988
Uhlrich, D. J., Cucchiaro, J. B., Humphrey, A. L., & Sherman, S. M. (1991). Morphology and axonal projection patterns of individual neurons in the cat perigeniculate nucleus. Journal of Neurophysiology, 65(6), 1528-1541. https://doi.org/10.1152/jn.1991.65.6.1528
Ulfig, N., Nickel, J., & Bohl, J. (1998). Transient features of the thalamic reticular nucleus in the human foetal brain. European Journal of Neuroscience, 10(12), 3773-3784. https://doi.org/10.1046/j.1460-9568.1998.00390.x
Usrey, W. M., & Alitto, H. J. (2015). Visual functions of the thalamus. Annual Review of Vision Science, 1(1), 351-371. https://doi.org/10.1146/annurev-vision-082114-035920
Wahle, P., & Reimann, S. (1997). Postnatal developmental changes of neurons expressing calcium-binding proteins and GAD mRNA in the pretectal nuclear complex of the cat. Developmental Brain Research, 99(1), 72-86. https://doi.org/10.1016/S0165-3806(96)00208-8
Wimmer, R. D., Schmitt, L. I., Davidson, T. J., Nakajima, M., Deisseroth, K., & Halassa, M. M. (2015). Thalamic control of sensory selection in divided attention. Nature, 526(7575), 705-709. https://doi.org/10.1038/nature15398
Wouterlood, F. G., Canto, C. B., Aliane, V., Boekel, A. J., Grosche, J., Härtig, W., Beliën, J. A. M., & Witter, M. P. (2007). Coexpression of vesicular glutamate transporters 1 and 2, glutamic acid decarboxylase and calretinin in rat entorhinal cortex. Brain Structure and Function, 212(3-4), 303-319. https://doi.org/10.1007/s00429-007-0163-z
Yamazaki, H., Sekiguchi, M., Takamatsu, M., Tanabe, Y., & Nakanishi, S. (2004). Distinct ontogenic and regional expressions of newly identified Cajal-Retzius cell-specific genes during neocorticogenesis. Proceedings of the National Academy of Sciences, 101(40), 14509-14514. https://doi.org/10.1073/pnas.0406295101
Yan, Y. H., Van Brederode, J. F. M., & Hendrickson, A. E. (1995). Transient co-localization of calretinin, parvalbumin, and calbindin-D28k in developing visual cortex of monkey. Journal of Neurocytology, 24(11), 825-837. https://doi.org/10.1007/BF01179982

Auteurs

Natalia Merkulyeva (N)

Lab Neuromorphology, Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia.

Аleksandr Mikhalkin (А)

Lab Neuromorphology, Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia.

Anna Kostareva (A)

Institution of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia.

Tatyana Vavilova (T)

Institution of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH