Early macrophage response to obesity encompasses Interferon Regulatory Factor 5 regulated mitochondrial architecture remodelling.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
30 08 2022
30 08 2022
Historique:
received:
06
05
2021
accepted:
16
08
2022
entrez:
30
8
2022
pubmed:
31
8
2022
medline:
3
9
2022
Statut:
epublish
Résumé
Adipose tissue macrophages (ATM) adapt to changes in their energetic microenvironment. Caloric excess, in a range from transient to diet-induced obesity, could result in the transition of ATMs from highly oxidative and protective to highly inflammatory and metabolically deleterious. Here, we demonstrate that Interferon Regulatory Factor 5 (IRF5) is a key regulator of macrophage oxidative capacity in response to caloric excess. ATMs from mice with genetic-deficiency of Irf5 are characterised by increased oxidative respiration and mitochondrial membrane potential. Transient inhibition of IRF5 activity leads to a similar respiratory phenotype as genomic deletion, and is reversible by reconstitution of IRF5 expression. We find that the highly oxidative nature of Irf5-deficient macrophages results from transcriptional de-repression of the mitochondrial matrix component Growth Hormone Inducible Transmembrane Protein (GHITM) gene. The Irf5-deficiency-associated high oxygen consumption could be alleviated by experimental suppression of Ghitm expression. ATMs and monocytes from patients with obesity or with type-2 diabetes retain the reciprocal regulatory relationship between Irf5 and Ghitm. Thus, our study provides insights into the mechanism of how the inflammatory transcription factor IRF5 controls physiological adaptation to diet-induced obesity via regulating mitochondrial architecture in macrophages.
Identifiants
pubmed: 36042203
doi: 10.1038/s41467-022-32813-z
pii: 10.1038/s41467-022-32813-z
pmc: PMC9427774
doi:
Substances chimiques
Interferon Regulatory Factors
0
Irf5 protein, mouse
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5089Informations de copyright
© 2022. The Author(s).
Références
Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
J Physiol. 2021 Feb;599(3):863-888
pubmed: 32358865
Nat Immunol. 2011 Mar;12(3):231-8
pubmed: 21240265
Cell Syst. 2016 Nov 23;3(5):491-495.e5
pubmed: 27863955
Nucleic Acids Res. 2020 Jan 8;48(D1):D87-D92
pubmed: 31701148
BMC Bioinformatics. 2014 Oct 24;15:333
pubmed: 25344230
J Immunol. 2019 Feb 1;202(3):920-930
pubmed: 30593537
Genome Res. 2001 Sep;11(9):1541-8
pubmed: 11544197
J Immunol. 2018 Feb 1;200(3):1220-1226
pubmed: 29288205
Nat Immunol. 2016 Mar;17(3):216-7
pubmed: 26882249
BMC Immunol. 2004 Aug 05;5:17
pubmed: 15296517
Mol Biol Cell. 2008 Jun;19(6):2597-608
pubmed: 18417609
Cell Rep. 2016 Oct 11;17(3):684-696
pubmed: 27732846
Nat Biotechnol. 2012 Mar 07;30(3):224-6
pubmed: 22398613
Sci Rep. 2018 Feb 26;8(1):3603
pubmed: 29483608
Cell Mol Immunol. 2022 Mar;19(3):384-408
pubmed: 34876704
Clin Exp Immunol. 2021 Apr;204(1):134-143
pubmed: 33423291
Methods Enzymol. 1995;260:406-17
pubmed: 8592463
Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5096-E5105
pubmed: 29760084
Cell Rep. 2017 Sep 26;20(13):3149-3161
pubmed: 28954231
Nat Metab. 2020 Dec;2(12):1427-1442
pubmed: 33199895
Bioinformatics. 2014 Apr 1;30(7):1003-5
pubmed: 24227676
OMICS. 2012 May;16(5):284-7
pubmed: 22455463
Cell Metab. 2021 Feb 2;33(2):437-453.e5
pubmed: 33378646
Genome Biol. 2014;15(12):550
pubmed: 25516281
J Clin Invest. 2018 Apr 2;128(4):1538-1550
pubmed: 29528335
Bioinformatics. 2012 Jun 1;28(11):1542-3
pubmed: 22492314
Cell Rep. 2016 Aug 30;16(9):2442-55
pubmed: 27545875
Cell Metab. 2017 Jun 6;25(6):1282-1293.e7
pubmed: 28416194
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3402-7
pubmed: 17360658
Cells. 2020 Sep 23;9(10):
pubmed: 32977469
Cell Rep. 2014 Sep 11;8(5):1308-17
pubmed: 25159141
Sci Adv. 2021 Nov 12;7(46):eabi8602
pubmed: 34767443
Diabetologia. 2018 Apr;61(4):942-953
pubmed: 29333574
PLoS One. 2016 Apr 06;11(4):e0151999
pubmed: 27050551
Genome Res. 2002 Jun;12(6):996-1006
pubmed: 12045153
Nat Med. 2015 Jun;21(6):610-8
pubmed: 25939064
Nat Rev Immunol. 2016 Sep;16(9):553-65
pubmed: 27396447
Front Cell Dev Biol. 2019 Mar 22;7:42
pubmed: 30968022
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Biochim Biophys Acta Mol Cell Biol Lipids. 2018 Apr;1863(4):433-446
pubmed: 29360568
Sci Rep. 2020 Mar 27;10(1):5555
pubmed: 32221369
Redox Biol. 2020 Jan;28:101339
pubmed: 31610469
Nat Immunol. 2021 May;22(5):639-653
pubmed: 33907320
Immunol Cell Biol. 2020 Aug;98(7):528-539
pubmed: 32686869
Nature. 2001 Feb 15;409(6822):860-921
pubmed: 11237011
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11001-6
pubmed: 26283380
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Cell. 2019 Jul 25;178(3):686-698.e14
pubmed: 31257031
Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):E6254-E6263
pubmed: 29891687
Nucleic Acids Res. 2021 Jan 8;49(D1):D1046-D1057
pubmed: 33221922
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16017-22
pubmed: 25352671
J Clin Invest. 2003 Dec;112(12):1796-808
pubmed: 14679176
Diabetes. 2011 Oct;60(10):2474-83
pubmed: 21911747
Cell Immunol. 2009;258(2):138-46
pubmed: 19423085
Cell. 2016 Oct 6;167(2):457-470.e13
pubmed: 27667687