Outcomes of Babies with Opioid Exposure (OBOE): protocol of a prospective longitudinal cohort study.
Journal
Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
received:
24
05
2022
accepted:
05
08
2022
revised:
01
08
2022
medline:
12
5
2023
pubmed:
31
8
2022
entrez:
30
8
2022
Statut:
ppublish
Résumé
While the health, social, and economic impacts of opioid addiction on adults and their communities are well known, the impact of maternal opioid use on the fetus exposed in utero is less well understood. This paper presents the protocol of the ACT NOW Outcomes of Babies with Opioid Exposure (OBOE) Study, a multi-site prospective longitudinal cohort study of infants with antenatal opioid exposure and unexposed controls. Study objectives are to determine the impact of antenatal opioid exposure on brain development and neurodevelopmental outcomes over the first 2 years of life and explore whether family, home, and community factors modify developmental trajectories during this critical time period. Primary outcomes related to brain development include cortical volumes, deep cerebral gray matter volumes, resting-state functional connectivity measures, and structural connectivity measures using diffusion tensor imaging. Primary neurodevelopmental outcomes include visual abnormalities, cognitive, language, and motor skills measured using the Bayley Scales of Infant Development and social-emotional and behavioral problems and competence measured by the Brief Infant-Toddler Social and Emotional Assessment. The OBOE study has been designed to overcome challenges of previous studies and will help further understanding of the effects of antenatal opioid exposure on early infant development. This study will integrate MRI findings and comprehensive neurodevelopmental assessments to provide early insights into the functional topography of the brain in this high-risk population and assess MRI as a potential biomarker. Rather than conducting neuroimaging at a single time point, the study will include serial MRI assessments from birth to 2 years, allowing for the examination of trajectories throughout this period of rapid brain development. While previous studies often have had limited information on exposures, this study will use umbilical cord assays to accurately measure amounts of opioids and other substances from 20 weeks of gestation to birth.
Sections du résumé
BACKGROUND
While the health, social, and economic impacts of opioid addiction on adults and their communities are well known, the impact of maternal opioid use on the fetus exposed in utero is less well understood.
METHODS
This paper presents the protocol of the ACT NOW Outcomes of Babies with Opioid Exposure (OBOE) Study, a multi-site prospective longitudinal cohort study of infants with antenatal opioid exposure and unexposed controls. Study objectives are to determine the impact of antenatal opioid exposure on brain development and neurodevelopmental outcomes over the first 2 years of life and explore whether family, home, and community factors modify developmental trajectories during this critical time period.
RESULTS
Primary outcomes related to brain development include cortical volumes, deep cerebral gray matter volumes, resting-state functional connectivity measures, and structural connectivity measures using diffusion tensor imaging. Primary neurodevelopmental outcomes include visual abnormalities, cognitive, language, and motor skills measured using the Bayley Scales of Infant Development and social-emotional and behavioral problems and competence measured by the Brief Infant-Toddler Social and Emotional Assessment.
CONCLUSIONS
The OBOE study has been designed to overcome challenges of previous studies and will help further understanding of the effects of antenatal opioid exposure on early infant development.
IMPACT
This study will integrate MRI findings and comprehensive neurodevelopmental assessments to provide early insights into the functional topography of the brain in this high-risk population and assess MRI as a potential biomarker. Rather than conducting neuroimaging at a single time point, the study will include serial MRI assessments from birth to 2 years, allowing for the examination of trajectories throughout this period of rapid brain development. While previous studies often have had limited information on exposures, this study will use umbilical cord assays to accurately measure amounts of opioids and other substances from 20 weeks of gestation to birth.
Identifiants
pubmed: 36042329
doi: 10.1038/s41390-022-02279-2
pii: 10.1038/s41390-022-02279-2
pmc: PMC9971338
mid: NIHMS1829720
doi:
Substances chimiques
Analgesics, Opioid
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1772-1779Subventions
Organisme : NICHD NIH HHS
ID : P50 HD105328
Pays : United States
Organisme : NICHD NIH HHS
ID : PL1 HD101059
Pays : United States
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.
Références
Desai, R. J., Hernandez-Diaz, S., Bateman, B. T. & Huybrechts, K. F. Increase in prescription opioid use during pregnancy among Medicaid-enrolled women. Obstet. Gynecol. 123, 997–1002 (2014).
pubmed: 24785852
pmcid: 4020039
doi: 10.1097/AOG.0000000000000208
Haight, S. C., Ko, J. Y., Tong, V. T., Bohm, M. K. & Callaghan, W. M. Opioid use disorder documented at delivery hospitalization - United States, 1999-2014. MMWR Morb. Mortal. Wkly Rep. 67, 845–849 (2018).
pubmed: 30091969
pmcid: 6089335
doi: 10.15585/mmwr.mm6731a1
Hirai, A. H., Ko, J. Y., Owens, P. L., Stocks, C. & Patrick, S. W. Neonatal abstinence syndrome and maternal opioid-related diagnoses in the US, 2010-2017. JAMA 325, 146–155 (2021).
pubmed: 33433576
pmcid: 7804920
doi: 10.1001/jama.2020.24991
Guo, H., Enters, E. K., McDowell, K. P. & Robinson, S. E. The effect of prenatal exposure to methadone on neurotransmitters in neonatal rats. Dev. Brain Res. 57, 296–298 (1990).
doi: 10.1016/0165-3806(90)90056-5
Hu, S., Sheng, W. S., Lokensgard, J. R. & Peterson, P. K. Morphine induces apoptosis of human microglia and neurons. Neuropharmacology 42, 829–836 (2002).
pubmed: 12015209
doi: 10.1016/S0028-3908(02)00030-8
Wu, C. C. et al. Prenatal buprenorphine exposure decreases neurogenesis in rats. Toxicol. Lett. 225, 92–101 (2014).
pubmed: 24321744
doi: 10.1016/j.toxlet.2013.12.001
Nygaard, E. et al. Neuroanatomical characteristics of youths with prenatal opioid and poly-drug exposure. Neurotoxicol. Teratol. 68, 13–26 (2018).
pubmed: 29679636
doi: 10.1016/j.ntt.2018.04.004
Sirnes, E. et al. Brain morphology in school-aged children with prenatal opioid exposure: a structural MRI study. Early Hum. Dev. 106-107, 33–39 (2017).
pubmed: 28187337
doi: 10.1016/j.earlhumdev.2017.01.009
Yuan, Q. et al. Do maternal opioids reduce neonatal regional brain volumes? A pilot study. J. Perinatol. 34, 909–913 (2014).
pubmed: 24945162
doi: 10.1038/jp.2014.111
Merhar, S. L. et al. Prenatal opioid exposure is associated with smaller brain volumes in multiple regions. Pediatr. Res. 90, 397–402 (2021).
pubmed: 33177677
doi: 10.1038/s41390-020-01265-w
Monnelly, V. J. et al. Prenatal methadone exposure is associated with altered neonatal brain development. Neuroimage Clin. 18, 9–14 (2018).
pubmed: 29326869
doi: 10.1016/j.nicl.2017.12.033
Salzwedel, A., Grewen, K. & Gao, W. T56. Brain functional connectivity in neonates with prenatal opioid exposure: a preliminary study focusing on the amygdala. Biol. Psychiatry 83, S150 (2018).
Merhar, S. L. et al. Effects of prenatal opioid exposure on functional networks in infancy. Dev. Cogn. Neurosci. 51, 100996 (2021).
pubmed: 34388637
pmcid: 8363826
doi: 10.1016/j.dcn.2021.100996
Radhakrishnan, R. et al. Resting state functional MRI in infants with prenatal opioid exposure-a pilot study. Neuroradiology 63, 585–591 (2021).
pubmed: 32978671
doi: 10.1007/s00234-020-02552-3
Bakhireva, L. N. et al. Association between prenatal opioid exposure, neonatal opioid withdrawal syndrome, and neurodevelopmental and behavioral outcomes at 5-8 months of age. Early Hum. Dev. 128, 69–76 (2019).
pubmed: 30554024
doi: 10.1016/j.earlhumdev.2018.10.010
Kaltenbach, K. et al. Prenatal exposure to methadone or buprenorphine: early childhood developmental outcomes. Drug Alcohol Depend. 185, 40–49 (2018).
pubmed: 29413437
pmcid: 5906792
doi: 10.1016/j.drugalcdep.2017.11.030
Merhar, S. L. et al. Retrospective review of neurodevelopmental outcomes in infants treated for neonatal abstinence syndrome. J. Perinatol. 38, 587–592 (2018).
pubmed: 29515225
pmcid: 5999528
doi: 10.1038/s41372-018-0088-9
McGlone, L. et al. Visual outcome in infants born to drug-misusing mothers prescribed methadone in pregnancy. Br. J. Ophthalmol. 98, 238–245 (2014).
pubmed: 24246372
doi: 10.1136/bjophthalmol-2013-303967
Nelson, L. B., Ehrlich, S., Calhoun, J. H., Matteucci, T. & Finnegan, L. P. Occurrence of strabismus in infants born to drug-dependent women. Am. J. Dis. Child. 141, 175–178 (1987).
pubmed: 3812384
Spiteri Cornish, K., Hrabovsky, M., Scott, N. W., Myerscough, E. & Reddy, A. R. The short- and long-term effects on the visual system of children following exposure to maternal substance misuse in pregnancy. Am. J. Ophthalmol. 156, 190–194 (2013).
pubmed: 23628351
doi: 10.1016/j.ajo.2013.02.004
Schwartz, A. N., Reyes, L. M., Meschke, L. L. & Kintziger, K. W. Prenatal opioid exposure and adhd childhood symptoms: a meta-analysis. Children 8, 106 (2021).
Sundelin Wahlsten, V. & Sarman, I. Neurobehavioural development of preschool-age children born to addicted mothers given opiate maintenance treatment with buprenorphine during pregnancy. Acta Paediatr. 102, 544–549 (2013).
pubmed: 23432078
doi: 10.1111/apa.12210
Sherman, L. J., Ali, M. M., Mutter, R. & Larson, J. Mental disorders among children born with neonatal abstinence syndrome. Psychiatr. Serv. 70, 151 (2019).
pubmed: 30453858
doi: 10.1176/appi.ps.201800341
Jones, H. E., Kaltenbach, K., Benjamin, T., Wachman, E. M. & O’Grady, K. E. Prenatal opioid exposure, neonatal abstinence syndrome/neonatal opioid withdrawal syndrome, and later child development research: shortcomings and solutions. J. Addict. Med. 13, 90–92 (2019).
pubmed: 30334926
doi: 10.1097/ADM.0000000000000463
Neonatal Resarch Network. NICHD Neonatal Resarch Network background and overview. https://neonatal.rti.org/index.cfm?fuseaction=about.network (2021).
Hager, E. R. et al. Development and validity of a 2-item screen to identify families at risk for food insecurity. Pediatrics 126, e26–e32 (2010).
pubmed: 20595453
doi: 10.1542/peds.2009-3146
American Academy of Pediatrics and the Food Research & Action Center. Screen and Intervene: A Toolkit for Pediatricians to Address Food Insecurity (Food Research & Action Center, 2021).
Dean, D. C. 3rd et al. Pediatric neuroimaging using magnetic resonance imaging during non-sedated sleep. Pediatr. Radiol. 44, 64–72 (2014).
pubmed: 23917588
doi: 10.1007/s00247-013-2752-8
Lester, B. M., Tronick, E. Z. & Brazelton, T. B. The Neonatal Intensive Care Unit Network Neurobehavioral Scale procedures. Pediatrics 113, 641–667 (2004).
pubmed: 14993524
doi: 10.1542/peds.113.S2.641
Voress, J. & Maddox, T. Developmental Assessment of Young Children 2nd edn (PRO-ED, 2013).
Bayley, N. & Aylward, G. P. Bayley Scales of Infant and Toddler Development 4th edn (Pearson, 2019).
Palisano, R. J. et al. Validation of a model of gross motor function for children with cerebral palsy. Phys. Ther. 80, 974–985 (2000).
pubmed: 11002433
doi: 10.1093/ptj/80.10.974
Sadeh, A. A brief screening questionnaire for infant sleep problems: validation and findings for an internet sample. Pediatrics 113, e570–e577 (2004).
pubmed: 15173539
doi: 10.1542/peds.113.6.e570
Briggs-Gowan M & Carter, A. S. Brief Infant-Toddler Social and Emotional Assessment (Bitsea), Vol. 47 (Yale University, 2002).
Briggs-Gowan, M. J., Carter, A. S., Irwin, J. R., Wachtel, K. & Cicchetti, D. V. The Brief Infant-toddler Social And Emotional Assessment: screening for social-emotional problems and delays in competence. J. Pediatr. Psychol. 29, 143–155 (2004).
pubmed: 15096535
doi: 10.1093/jpepsy/jsh017
Robins, D. L. et al. Validation of the Modified Checklist for Autism in Toddlers, Revised with Follow-up (M-Chat-R/F). Pediatrics 133, 37–45 (2014).
pubmed: 24366990
pmcid: 3876182
doi: 10.1542/peds.2013-1813
Cella, D. et al. The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005-2008. J. Clin. Epidemiol. 63, 1179–1194 (2010).
pubmed: 20685078
pmcid: 2965562
doi: 10.1016/j.jclinepi.2010.04.011
Abidin, R. R. Parenting Stress Index (4th Ed.) (PAR, 2012).
Wechsler, D. Wechsler Abbreviated Scale of Intelligence–Second Edition (WASI-II). https://www.txautism.net/evaluations/wechsler-abbreviated-scale-of-intelligence-second-edition?msclkid=87ee7edeb1e111ecac5cbc8372b1136f (2011).
Felitti, V. J. et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. Am. J. Prev. Med. 14, 245–258 (1998).
pubmed: 9635069
doi: 10.1016/S0749-3797(98)00017-8
Condon, J. T. & Corkindale, C. J. The assessment of parent-to-infant attachment: development of a self-report questionnaire instrument. J. Reprod. Infant Psychol. 16, 57–76 (1998).
doi: 10.1080/02646839808404558
Caldwell, B. M. & Bradley, R. H. Home Observation for Measurement of the Environment: Administration Manual (Family & Human Dynamics Research Institute, Arizona State University, 2003).
Shi, F. et al. Label: pediatric brain extraction using learning-based meta-algorithm. Neuroimage 62, 1975–1986 (2012).
pubmed: 22634859
doi: 10.1016/j.neuroimage.2012.05.042
Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998).
pubmed: 9617910
doi: 10.1109/42.668698
Clouchoux, C. et al. Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Struct. Funct. 217, 127–139 (2012).
pubmed: 21562906
doi: 10.1007/s00429-011-0325-x
Clouchoux, C. et al. Delayed cortical development in fetuses with complex congenital heart disease. Cereb. Cortex 23, 2932–2943 (2013).
pubmed: 22977063
doi: 10.1093/cercor/bhs281
Feng, L. et al. Age-specific gray and white matter DTI atlas for human brain at 33, 36 and 39 postmenstrual weeks. Neuroimage 185, 685–698 (2019).
pubmed: 29959046
doi: 10.1016/j.neuroimage.2018.06.069
Mori, S. et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40, 570–582 (2008).
pubmed: 18255316
doi: 10.1016/j.neuroimage.2007.12.035
Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).
pubmed: 23994314
doi: 10.1016/j.neuroimage.2013.08.048
Shi, F. et al. Infant brain atlases from neonates to 1- and 2-year-olds. PLoS ONE 6, e18746 (2011).
pubmed: 21533194
pmcid: 3077403
doi: 10.1371/journal.pone.0018746
Wothke, W. in Modeling Longitudinal and Multilevel Data: Practical Issues, Applied Approaches, and Specific Examples (Little, T. & Schnabel, K. eds.) p. 219–240 (Lawrence Erlbaum Association, 2000).
Enders, C. K. A primer on maximum likelihood algorithms available for use with missing data. Struct. Equ. Modeling Multidiscip. J. 8, 128–141 (2001).
doi: 10.1207/S15328007SEM0801_7
Schafer, J. L. & Graham, J. W. Missing data: our view of the state of the art. Psychol. Methods 7, 147–177 (2002).
pubmed: 12090408
doi: 10.1037/1082-989X.7.2.147
Post, W. J., Buijs, C., Stolk, R. P., de Vries, E. G. & le Cessie, S. The analysis of longitudinal quality of life measures with informative drop-out: a pattern mixture approach. Qual. Life Res. 19, 137–148 (2010).
pubmed: 20041307
doi: 10.1007/s11136-009-9564-1
Merhar, S. L. et al. White matter injury and structural anomalies in infants with prenatal opioid exposure. AJNR Am. J. Neuroradiol. 40, 2161–2165 (2019).
pubmed: 31624119
pmcid: 6911627
Nelson, L. F. et al. Cognitive outcomes of young children after prenatal exposure to medications for opioid use disorder: a systematic review and meta-analysis. JAMA Netw. Open 3, e201195 (2020).
pubmed: 32186745
pmcid: 7081119
doi: 10.1001/jamanetworkopen.2020.1195
Andersen, J. M., Hoiseth, G. & Nygaard, E. Prenatal exposure to methadone or buprenorphine and long-term outcomes: a meta-analysis. Early Hum. Dev. 143, 104997 (2020).
pubmed: 32146140
doi: 10.1016/j.earlhumdev.2020.104997
Lee, S. J., Bora, S., Austin, N. C., Westerman, A. & Henderson, J. M. T. Neurodevelopmental outcomes of children born to opioid-dependent mothers: a systematic review and meta-analysis. Acad. Pediatr. 20, 308–318 (2020).
pubmed: 31734383
doi: 10.1016/j.acap.2019.11.005
Arter, S. J. et al. Longitudinal outcomes of children exposed to opioids in-utero: a systematic review. J. Nurs. Scholarsh. 53, 55–64 (2021).
pubmed: 33225521
doi: 10.1111/jnu.12609
Monnelly, V. J., Hamilton, R., Chappell, F. M., Mactier, H. & Boardman, J. P. Childhood neurodevelopment after prescription of maintenance methadone for opioid dependency in pregnancy: a systematic review and meta-analysis. Dev. Med. Child Neurol. 61, 750–760 (2019).
pubmed: 30511742
doi: 10.1111/dmcn.14117
Hemmati, Z., Conti, A. A. & Baldacchino, A. Ophthalmic outcomes in children exposed to opioid maintenance treatment in utero: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 136, 104601 (2022).
pubmed: 35263646
doi: 10.1016/j.neubiorev.2022.104601
Singer, L. T. et al. Cognitive outcomes of preschool children with prenatal cocaine exposure. JAMA 291, 2448–2456 (2004).
pubmed: 15161895
doi: 10.1001/jama.291.20.2448
Hans, S. L. & Jeremy, R. J. Postneonatal mental and motor development of infants exposed in utero to opioid drugs. Infant Ment. Health J. 22, 300–315 (2001).
doi: 10.1002/imhj.1003
Messinger, D. S. et al. The Maternal Lifestyle Study: cognitive, motor, and behavioral outcomes of cocaine-exposed and opiate-exposed infants through three years of age. Pediatrics 113, 1677–1685 (2004).
pubmed: 15173491
doi: 10.1542/peds.113.6.1677