Sulforaphane kills Mycobacterium tuberculosis H37Ra and Mycobacterium smegmatis mc
Mycobacterium tuberculosis
ROS
macrophages
redox
sulforaphane
Journal
Journal of microbiology (Seoul, Korea)
ISSN: 1976-3794
Titre abrégé: J Microbiol
Pays: Korea (South)
ID NLM: 9703165
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
received:
20
06
2022
accepted:
22
08
2022
revised:
09
08
2022
pubmed:
2
9
2022
medline:
4
11
2022
entrez:
1
9
2022
Statut:
ppublish
Résumé
Mycobacterium tuberculosis (M. tuberculosis) is a highly pathogenic intracellular pathogen that causes tuberculosis (TB), the leading cause of mortality from single infections. Redox homeostasis plays a very important role in the resistance of M. tuberculosis to antibiotic damage and various environmental stresses. The antioxidant sulforaphane (SFN) has been reported to exhibit anticancer activity and inhibit the growth of a variety of bacteria and fungi. Nonetheless, it remains unclear whether SFN exhibits anti-mycobacterial activity. Our results showed that the SFN against M. tuberculosis H37Ra exhibited bactericidal activity in a time and dose-dependent manner. The anti-tubercular activity of SFN was significantly correlated with bacterial reactive oxygen species (ROS) levels. In addition, SFN promoted the bactericidal effect of macrophages on intracellular bacteria in a dose-dependent manner, mediated by increasing intracellular mitochondrial ROS levels and decreasing cytoplasmic ROS levels. Taken together, our data revealed the previously unrecognized antimicrobial functions of SFN. Future studies focusing on the mechanism of SFN in macrophages against M. tuberculosis are essential for developing new host-directed therapeutic approaches against TB.
Identifiants
pubmed: 36048328
doi: 10.1007/s12275-022-2284-8
pii: 10.1007/s12275-022-2284-8
doi:
Substances chimiques
Reactive Oxygen Species
0
sulforaphane
GA49J4310U
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1095-1105Informations de copyright
© 2022. Author(s).
Références
Aldini, G., Altomare, A., Baron, G., Vistoli, G., Carini, M., Borsani, L., and Sergio, F. 2018. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic. Res. 52, 751–762.
pubmed: 29742938
doi: 10.1080/10715762.2018.1468564
Amaral, E.P., Conceição, E.L., Costa, D.L., Rocha, M.S., Marinho, J.M., Cordeiro-Santos, M., D’Império-Lima, M.R., Barbosa, T., Sher, A., and Andrade, B.B. 2016. N-Acetyl-cysteine exhibits potent anti-mycobacterial activity in addition to its known anti-oxidative functions. BMC Microbiol. 16, 251.
pubmed: 27793104
pmcid: 5084440
doi: 10.1186/s12866-016-0872-7
Andrews, J.M. 2001. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 48, 5–16.
pubmed: 11420333
doi: 10.1093/jac/48.suppl_1.5
Beena and Rawat, D.S. 2013. Antituberculosis drug research: a critical overview. Med. Res. Rev. 33, 693–764.
pubmed: 22622957
doi: 10.1002/med.21262
Bonay, M., Roux, A.L., Floquet, J., Retory, Y., Herrmann, J.L., Lofaso, F., and Deramaudt, T.B. 2015. Caspase-independent apoptosis in infected macrophages triggered by sulforaphane via Nrf2/p38 signaling pathways. Cell Death Discov. 1, 15022.
pubmed: 27551455
pmcid: 4979433
doi: 10.1038/cddiscovery.2015.22
Chen, Y., Azad, M.B., and Gibson, S.B. 2009. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 16, 1040–1052.
pubmed: 19407826
doi: 10.1038/cdd.2009.49
Choi, W.J., Kim, S.K., Park, H.K., Sohn, U.D., and Kim, W. 2014. Antiinflammatory and anti-superbacterial properties of sulforaphane from shepherd’s purse. Korean J. Physiol. Pharmacol. 18, 33–39.
pubmed: 24634594
pmcid: 3951821
doi: 10.4196/kjpp.2014.18.1.33
Cierpiał, T., Kiełbasiński, P., Kwiatkowska, M., Łyzwa, P., Lubelska, K., Kuran, D., Dąbrowska, A., Kruszewska, H., Mielczarek, L., Chilmonczyk, Z., et al. 2020. Fluoroaryl analogs of sulforaphane — A group of compounds of anticancer and antimicrobial activity. Bioorg. Chem. 94, 103454.
pubmed: 31787344
doi: 10.1016/j.bioorg.2019.103454
De Steenwinkel, J.E.M., de Knegt, G.J., ten Kate, M.T., van Belkum, A., Verbrugh, H.A., Kremer, K., van Soolingen, D., and Bakker-Woudenberg, I.A.J.M. 2010. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 65, 2582–2589.
pubmed: 20947621
doi: 10.1093/jac/dkq374
Deramaudt, T.B., Ali, M., Vinit, S., and Bonay, M. 2020. Sulforaphane reduces intracellular survival of Staphylococcus aureus in macrophages through inhibition of JNK and p38 MAPKinduced inflammation. Int. J. Mol. Med. 45, 1927–1941.
pubmed: 32323751
pmcid: 7169961
Dong, C., Zhou, J., Wang, P., Li, T., Zhao, Y., Ren, X., Lu, J., Wang, J., Holmgren, A., and Zou, L. 2019. Topical therapeutic efficacy of ebselen against multidrug-resistant Staphylococcus aureus LT-1 targeting thioredoxin reductase. Front. Microbiol. 10, 3016.
pubmed: 32010088
doi: 10.3389/fmicb.2019.03016
Fahey, J.W., Haristoy, X., Dolan, P.M., Kensler, T.W., Scholtus, I., Stephenson, K.K., Talalay, P., and Lozniewski, A. 2002. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc. Natl. Acad. Sci. USA 99, 7610–7615.
pubmed: 12032331
pmcid: 124299
doi: 10.1073/pnas.112203099
Filomeni, G., De Zio, D., and Cecconi, F. 2015. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 22, 377–388.
pubmed: 25257172
doi: 10.1038/cdd.2014.150
Ganguli, G., Mukherjee, U., and Sonawane, A. 2019. Peroxisomes and oxidative stress: their implications in the modulation of cellular immunity during mycobacterial infection. Front. Microbiol. 10, 1121.
pubmed: 31258517
pmcid: 6587667
doi: 10.3389/fmicb.2019.01121
Halliwell, B. and Gutteridge, J.M. 2007. Free Radicals in Biology and Medicine. 4th edn. Oxford University Press, New York, USA.
Heemskerk, D., Caws, M., Marais, B., and Farrar, J. 2015. Tuberculosis in Adults and Children. Springer, London, United Kingdom.
doi: 10.1007/978-3-319-19132-4
Hong, Y., Li, Q., Gao, Q., Xie, J., Huang, H., Drlica, K., and Zhao, X. 2020. Reactive oxygen species play a dominant role in all pathways of rapid quinolone-mediated killing. J. Antimicrob. Chemother. 75, 576–585.
pubmed: 31793990
doi: 10.1093/jac/dkz485
Jiang, X., Liu, Y., Ma, L., Ji, R., Qu, Y., Xin, Y., and Lv, G. 2018. Chemopreventive activity of sulforaphane. Drug Des. Devel. Ther. 12, 2905–2913.
pubmed: 30254420
pmcid: 6141106
doi: 10.2147/DDDT.S100534
Johansson, N.L., Pavia, C.S., and Chiao, J.W. 2008. Growth inhibition of a spectrum of bacterial and fungal pathogens by sulforaphane, an isothiocyanate product found in broccoli and other cruciferous vegetables. Planta Med. 74, 747–750.
pubmed: 18484523
doi: 10.1055/s-2008-1074520
Kaufmann, S.H.E., Dorhoi, A., Hotchkiss, R.S., and Bartenschlager, R. 2018. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov. 17, 35–56.
pubmed: 28935918
doi: 10.1038/nrd.2017.162
Keren, I., Wu, Y., Inocencio, J., Mulcahy, L.R., and Lewis, K. 2013. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339, 1213–1216.
pubmed: 23471410
doi: 10.1126/science.1232688
Kilinç, G., Saris, A., Ottenhoff, T.H.M., and Haks, M.C. 2021. Host-directed therapy to combat mycobacterial infections. Immunol. Rev. 301, 62–83.
pubmed: 33565103
pmcid: 8248113
doi: 10.1111/imr.12951
Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810.
pubmed: 17803904
doi: 10.1016/j.cell.2007.06.049
Kumar, A., Farhana, A., Guidry, L., Saini, V., Hondalus, M., and Steyn, A.J.C. 2011. Redox homeostasis in mycobacteria: the key to tuberculosis control? Expert Rev. Mol. Med. 13, e39.
pubmed: 22172201
pmcid: 3241215
doi: 10.1017/S1462399411002079
Kumar, A., Toledo, J.C., Patel, R.P., Lancaster, J.R.Jr, and Steyn, A.J. 2007. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc. Natl. Acad. Sci. USA 104, 11568–11573.
pubmed: 17609369
pmcid: 1906723
doi: 10.1073/pnas.0705054104
Lee, W. and Lee, D.G. 2014. Lycopene-induced hydroxyl radical causes oxidative DNA damage in Escherichia coli. J. Microbiol. Biotechnol. 24, 1232–1237.
pubmed: 25022524
doi: 10.4014/jmb.1406.06009
Li, D., Shao, R., Wang, N., Zhou, N., Du, K., Shi, J., Wang, Y., Zhao, Z., Ye, X., Zhang, X., et al. 2021. Sulforaphane activates a lysosome-dependent transcriptional program to mitigate oxidative stress. Autophagy 17, 872–887.
pubmed: 32138578
doi: 10.1080/15548627.2020.1739442
Liu, Y. and Imlay, J.A. 2013. Cell death from antibiotics without the involvement of reactive oxygen species. Science 339, 1210–1213.
pubmed: 23471409
pmcid: 3731989
doi: 10.1126/science.1232751
Mo, S., Liu, X., Zhang, K., Wang, W., Cai, Y., Ouyang, Q., Zhu, C., Lin, D., Wan, H., Li, D., et al. 2021. Flunarizine suppresses Mycobacterium tuberculosis growth via calmodulin-dependent phagosome maturation. J. Leukoc. Biol. 111, 1021–1029.
pubmed: 34533236
doi: 10.1002/JLB.4A0221-119RR
Ouyang, Q., Zhang, K., Lin, D., Feng, C.G., Cai, Y., and Chen, X. 2020. Bazedoxifene suppresses intracellular Mycobacterium tuberculosis growth by enhancing autophagy. mSphere 5, e00124–20.
pubmed: 32269154
pmcid: 7142296
doi: 10.1128/mSphere.00124-20
Palucci, I. and Delogu, G. 2018. Host directed therapies for tuberculosis: futures strategies for an ancient disease. Chemotherapy 63, 172–180.
pubmed: 30032143
doi: 10.1159/000490478
Pei, Z., Wu, K., Li, Z., Li, C., Zeng, L., Li, F., Pei, N., Liu, H., Zhang, S.L., Song, Y.Z., et al. 2019. Pharmacologic ascorbate as a pro-drug for hydrogen peroxide release to kill mycobacteria. Biomed. Pharmacother. 109, 2119–2127.
pubmed: 30551469
doi: 10.1016/j.biopha.2018.11.078
Piasecka, A., Jedrzejczak-Rey, N., and Bednarek, P. 2015. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol. 206, 948–964.
pubmed: 25659829
doi: 10.1111/nph.13325
Singh, V. and Chibale, K. 2021. Strategies to combat multi-drug resistance in tuberculosis. Acc. Chem. Res. 54, 2361–2376.
pubmed: 33886255
pmcid: 8154215
doi: 10.1021/acs.accounts.0c00878
Taati Moghadam, M., Amirmozafari, N., Shariati, A., Hallajzadeh, M., Mirkalantari, S., Khoshbayan, A., and Masjedian Jazi, F. 2020. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect. Drug Resist. 13, 45–61.
pubmed: 32021319
pmcid: 6954843
doi: 10.2147/IDR.S234353
Tian, X., Jiang, X., Welch, C., Croley, T.R., Wong, T.Y., Chen, C., Fan, S., Chong, Y., Li, R., Ge, C., et al. 2018. Bactericidal effects of silver nanoparticles on lactobacilli and the underlying mechanism. ACS Appl. Mater. Interfaces 10, 8443–8450.
pubmed: 29481051
doi: 10.1021/acsami.7b17274
Vanduchova, A., Anzenbacher, P., and Anzenbacherova, E. 2019. Isothiocyanate from broccoli, sulforaphane, and its properties. J. Med. Food 22, 121–126.
pubmed: 30372361
doi: 10.1089/jmf.2018.0024
Vilchèze, C., Hartman, T., Weinrick, B., and Jacobs, W.R.Jr. 2013. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat. Commun. 4, 1881.
pubmed: 23695675
doi: 10.1038/ncomms2898
Wang, G., Hong, Y., Johnson, M.K., and Maier, R.J. 2006. Lipid peroxidation as a source of oxidative damage in Helicobacter pylori: protective roles of peroxiredoxins. Biochim. Biophys. Acta 1760, 1596–1603.
pubmed: 17069977
doi: 10.1016/j.bbagen.2006.05.005
Wang, Y., Mandal, A.K., Son, Y.O., Pratheeshkumar, P., Wise, J.T.F., Wang, L., Zhang, Z., Shi, X., and Chen, Z. 2018. Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicol. Appl. Pharmacol. 353, 23–30.
pubmed: 29885333
pmcid: 6281793
doi: 10.1016/j.taap.2018.06.003
Wang, W., Yang, J., Zhang, J., Liu, Y.X., Tian, C., Qu, B., Gao, C., Xin, P., Cheng, S., Zhang, W., et al. 2020. An Arabidopsis secondary metabolite directly targets expression of the bacterial type III secretion system to inhibit bacterial virulence. Cell Host Microbe 27, 601–613.
pubmed: 32272078
doi: 10.1016/j.chom.2020.03.004
Warner, D.F. and Mizrahi, V. 2006. Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin. Microbiol. Rev. 19, 558–570.
pubmed: 16847086
pmcid: 1539104
doi: 10.1128/CMR.00060-05
Wayne, L.G. and Hayes, L.G. 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun. 64, 2062–2069.
pubmed: 8675308
pmcid: 174037
doi: 10.1128/iai.64.6.2062-2069.1996
World Health Organization, WHO. 2021. Global tuberculosis report 2020. World Health Organization, Geneva, Switzerland.
Xie, Z., Siddiqi, N., and Rubin, E.J. 2005. Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 49, 4778–4780.
pubmed: 16251329
pmcid: 1280169
doi: 10.1128/AAC.49.11.4778-4780.2005
Zumla, A., Nahid, P., and Cole, S.T. 2013. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 12, 388–404.
pubmed: 23629506
doi: 10.1038/nrd4001