Sulforaphane kills Mycobacterium tuberculosis H37Ra and Mycobacterium smegmatis mc


Journal

Journal of microbiology (Seoul, Korea)
ISSN: 1976-3794
Titre abrégé: J Microbiol
Pays: Korea (South)
ID NLM: 9703165

Informations de publication

Date de publication:
Nov 2022
Historique:
received: 20 06 2022
accepted: 22 08 2022
revised: 09 08 2022
pubmed: 2 9 2022
medline: 4 11 2022
entrez: 1 9 2022
Statut: ppublish

Résumé

Mycobacterium tuberculosis (M. tuberculosis) is a highly pathogenic intracellular pathogen that causes tuberculosis (TB), the leading cause of mortality from single infections. Redox homeostasis plays a very important role in the resistance of M. tuberculosis to antibiotic damage and various environmental stresses. The antioxidant sulforaphane (SFN) has been reported to exhibit anticancer activity and inhibit the growth of a variety of bacteria and fungi. Nonetheless, it remains unclear whether SFN exhibits anti-mycobacterial activity. Our results showed that the SFN against M. tuberculosis H37Ra exhibited bactericidal activity in a time and dose-dependent manner. The anti-tubercular activity of SFN was significantly correlated with bacterial reactive oxygen species (ROS) levels. In addition, SFN promoted the bactericidal effect of macrophages on intracellular bacteria in a dose-dependent manner, mediated by increasing intracellular mitochondrial ROS levels and decreasing cytoplasmic ROS levels. Taken together, our data revealed the previously unrecognized antimicrobial functions of SFN. Future studies focusing on the mechanism of SFN in macrophages against M. tuberculosis are essential for developing new host-directed therapeutic approaches against TB.

Identifiants

pubmed: 36048328
doi: 10.1007/s12275-022-2284-8
pii: 10.1007/s12275-022-2284-8
doi:

Substances chimiques

Reactive Oxygen Species 0
sulforaphane GA49J4310U

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1095-1105

Informations de copyright

© 2022. Author(s).

Références

Aldini, G., Altomare, A., Baron, G., Vistoli, G., Carini, M., Borsani, L., and Sergio, F. 2018. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic. Res. 52, 751–762.
pubmed: 29742938 doi: 10.1080/10715762.2018.1468564
Amaral, E.P., Conceição, E.L., Costa, D.L., Rocha, M.S., Marinho, J.M., Cordeiro-Santos, M., D’Império-Lima, M.R., Barbosa, T., Sher, A., and Andrade, B.B. 2016. N-Acetyl-cysteine exhibits potent anti-mycobacterial activity in addition to its known anti-oxidative functions. BMC Microbiol. 16, 251.
pubmed: 27793104 pmcid: 5084440 doi: 10.1186/s12866-016-0872-7
Andrews, J.M. 2001. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 48, 5–16.
pubmed: 11420333 doi: 10.1093/jac/48.suppl_1.5
Beena and Rawat, D.S. 2013. Antituberculosis drug research: a critical overview. Med. Res. Rev. 33, 693–764.
pubmed: 22622957 doi: 10.1002/med.21262
Bonay, M., Roux, A.L., Floquet, J., Retory, Y., Herrmann, J.L., Lofaso, F., and Deramaudt, T.B. 2015. Caspase-independent apoptosis in infected macrophages triggered by sulforaphane via Nrf2/p38 signaling pathways. Cell Death Discov. 1, 15022.
pubmed: 27551455 pmcid: 4979433 doi: 10.1038/cddiscovery.2015.22
Chen, Y., Azad, M.B., and Gibson, S.B. 2009. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 16, 1040–1052.
pubmed: 19407826 doi: 10.1038/cdd.2009.49
Choi, W.J., Kim, S.K., Park, H.K., Sohn, U.D., and Kim, W. 2014. Antiinflammatory and anti-superbacterial properties of sulforaphane from shepherd’s purse. Korean J. Physiol. Pharmacol. 18, 33–39.
pubmed: 24634594 pmcid: 3951821 doi: 10.4196/kjpp.2014.18.1.33
Cierpiał, T., Kiełbasiński, P., Kwiatkowska, M., Łyzwa, P., Lubelska, K., Kuran, D., Dąbrowska, A., Kruszewska, H., Mielczarek, L., Chilmonczyk, Z., et al. 2020. Fluoroaryl analogs of sulforaphane — A group of compounds of anticancer and antimicrobial activity. Bioorg. Chem. 94, 103454.
pubmed: 31787344 doi: 10.1016/j.bioorg.2019.103454
De Steenwinkel, J.E.M., de Knegt, G.J., ten Kate, M.T., van Belkum, A., Verbrugh, H.A., Kremer, K., van Soolingen, D., and Bakker-Woudenberg, I.A.J.M. 2010. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 65, 2582–2589.
pubmed: 20947621 doi: 10.1093/jac/dkq374
Deramaudt, T.B., Ali, M., Vinit, S., and Bonay, M. 2020. Sulforaphane reduces intracellular survival of Staphylococcus aureus in macrophages through inhibition of JNK and p38 MAPKinduced inflammation. Int. J. Mol. Med. 45, 1927–1941.
pubmed: 32323751 pmcid: 7169961
Dong, C., Zhou, J., Wang, P., Li, T., Zhao, Y., Ren, X., Lu, J., Wang, J., Holmgren, A., and Zou, L. 2019. Topical therapeutic efficacy of ebselen against multidrug-resistant Staphylococcus aureus LT-1 targeting thioredoxin reductase. Front. Microbiol. 10, 3016.
pubmed: 32010088 doi: 10.3389/fmicb.2019.03016
Fahey, J.W., Haristoy, X., Dolan, P.M., Kensler, T.W., Scholtus, I., Stephenson, K.K., Talalay, P., and Lozniewski, A. 2002. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc. Natl. Acad. Sci. USA 99, 7610–7615.
pubmed: 12032331 pmcid: 124299 doi: 10.1073/pnas.112203099
Filomeni, G., De Zio, D., and Cecconi, F. 2015. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 22, 377–388.
pubmed: 25257172 doi: 10.1038/cdd.2014.150
Ganguli, G., Mukherjee, U., and Sonawane, A. 2019. Peroxisomes and oxidative stress: their implications in the modulation of cellular immunity during mycobacterial infection. Front. Microbiol. 10, 1121.
pubmed: 31258517 pmcid: 6587667 doi: 10.3389/fmicb.2019.01121
Halliwell, B. and Gutteridge, J.M. 2007. Free Radicals in Biology and Medicine. 4th edn. Oxford University Press, New York, USA.
Heemskerk, D., Caws, M., Marais, B., and Farrar, J. 2015. Tuberculosis in Adults and Children. Springer, London, United Kingdom.
doi: 10.1007/978-3-319-19132-4
Hong, Y., Li, Q., Gao, Q., Xie, J., Huang, H., Drlica, K., and Zhao, X. 2020. Reactive oxygen species play a dominant role in all pathways of rapid quinolone-mediated killing. J. Antimicrob. Chemother. 75, 576–585.
pubmed: 31793990 doi: 10.1093/jac/dkz485
Jiang, X., Liu, Y., Ma, L., Ji, R., Qu, Y., Xin, Y., and Lv, G. 2018. Chemopreventive activity of sulforaphane. Drug Des. Devel. Ther. 12, 2905–2913.
pubmed: 30254420 pmcid: 6141106 doi: 10.2147/DDDT.S100534
Johansson, N.L., Pavia, C.S., and Chiao, J.W. 2008. Growth inhibition of a spectrum of bacterial and fungal pathogens by sulforaphane, an isothiocyanate product found in broccoli and other cruciferous vegetables. Planta Med. 74, 747–750.
pubmed: 18484523 doi: 10.1055/s-2008-1074520
Kaufmann, S.H.E., Dorhoi, A., Hotchkiss, R.S., and Bartenschlager, R. 2018. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov. 17, 35–56.
pubmed: 28935918 doi: 10.1038/nrd.2017.162
Keren, I., Wu, Y., Inocencio, J., Mulcahy, L.R., and Lewis, K. 2013. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339, 1213–1216.
pubmed: 23471410 doi: 10.1126/science.1232688
Kilinç, G., Saris, A., Ottenhoff, T.H.M., and Haks, M.C. 2021. Host-directed therapy to combat mycobacterial infections. Immunol. Rev. 301, 62–83.
pubmed: 33565103 pmcid: 8248113 doi: 10.1111/imr.12951
Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810.
pubmed: 17803904 doi: 10.1016/j.cell.2007.06.049
Kumar, A., Farhana, A., Guidry, L., Saini, V., Hondalus, M., and Steyn, A.J.C. 2011. Redox homeostasis in mycobacteria: the key to tuberculosis control? Expert Rev. Mol. Med. 13, e39.
pubmed: 22172201 pmcid: 3241215 doi: 10.1017/S1462399411002079
Kumar, A., Toledo, J.C., Patel, R.P., Lancaster, J.R.Jr, and Steyn, A.J. 2007. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc. Natl. Acad. Sci. USA 104, 11568–11573.
pubmed: 17609369 pmcid: 1906723 doi: 10.1073/pnas.0705054104
Lee, W. and Lee, D.G. 2014. Lycopene-induced hydroxyl radical causes oxidative DNA damage in Escherichia coli. J. Microbiol. Biotechnol. 24, 1232–1237.
pubmed: 25022524 doi: 10.4014/jmb.1406.06009
Li, D., Shao, R., Wang, N., Zhou, N., Du, K., Shi, J., Wang, Y., Zhao, Z., Ye, X., Zhang, X., et al. 2021. Sulforaphane activates a lysosome-dependent transcriptional program to mitigate oxidative stress. Autophagy 17, 872–887.
pubmed: 32138578 doi: 10.1080/15548627.2020.1739442
Liu, Y. and Imlay, J.A. 2013. Cell death from antibiotics without the involvement of reactive oxygen species. Science 339, 1210–1213.
pubmed: 23471409 pmcid: 3731989 doi: 10.1126/science.1232751
Mo, S., Liu, X., Zhang, K., Wang, W., Cai, Y., Ouyang, Q., Zhu, C., Lin, D., Wan, H., Li, D., et al. 2021. Flunarizine suppresses Mycobacterium tuberculosis growth via calmodulin-dependent phagosome maturation. J. Leukoc. Biol. 111, 1021–1029.
pubmed: 34533236 doi: 10.1002/JLB.4A0221-119RR
Ouyang, Q., Zhang, K., Lin, D., Feng, C.G., Cai, Y., and Chen, X. 2020. Bazedoxifene suppresses intracellular Mycobacterium tuberculosis growth by enhancing autophagy. mSphere 5, e00124–20.
pubmed: 32269154 pmcid: 7142296 doi: 10.1128/mSphere.00124-20
Palucci, I. and Delogu, G. 2018. Host directed therapies for tuberculosis: futures strategies for an ancient disease. Chemotherapy 63, 172–180.
pubmed: 30032143 doi: 10.1159/000490478
Pei, Z., Wu, K., Li, Z., Li, C., Zeng, L., Li, F., Pei, N., Liu, H., Zhang, S.L., Song, Y.Z., et al. 2019. Pharmacologic ascorbate as a pro-drug for hydrogen peroxide release to kill mycobacteria. Biomed. Pharmacother. 109, 2119–2127.
pubmed: 30551469 doi: 10.1016/j.biopha.2018.11.078
Piasecka, A., Jedrzejczak-Rey, N., and Bednarek, P. 2015. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol. 206, 948–964.
pubmed: 25659829 doi: 10.1111/nph.13325
Singh, V. and Chibale, K. 2021. Strategies to combat multi-drug resistance in tuberculosis. Acc. Chem. Res. 54, 2361–2376.
pubmed: 33886255 pmcid: 8154215 doi: 10.1021/acs.accounts.0c00878
Taati Moghadam, M., Amirmozafari, N., Shariati, A., Hallajzadeh, M., Mirkalantari, S., Khoshbayan, A., and Masjedian Jazi, F. 2020. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect. Drug Resist. 13, 45–61.
pubmed: 32021319 pmcid: 6954843 doi: 10.2147/IDR.S234353
Tian, X., Jiang, X., Welch, C., Croley, T.R., Wong, T.Y., Chen, C., Fan, S., Chong, Y., Li, R., Ge, C., et al. 2018. Bactericidal effects of silver nanoparticles on lactobacilli and the underlying mechanism. ACS Appl. Mater. Interfaces 10, 8443–8450.
pubmed: 29481051 doi: 10.1021/acsami.7b17274
Vanduchova, A., Anzenbacher, P., and Anzenbacherova, E. 2019. Isothiocyanate from broccoli, sulforaphane, and its properties. J. Med. Food 22, 121–126.
pubmed: 30372361 doi: 10.1089/jmf.2018.0024
Vilchèze, C., Hartman, T., Weinrick, B., and Jacobs, W.R.Jr. 2013. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat. Commun. 4, 1881.
pubmed: 23695675 doi: 10.1038/ncomms2898
Wang, G., Hong, Y., Johnson, M.K., and Maier, R.J. 2006. Lipid peroxidation as a source of oxidative damage in Helicobacter pylori: protective roles of peroxiredoxins. Biochim. Biophys. Acta 1760, 1596–1603.
pubmed: 17069977 doi: 10.1016/j.bbagen.2006.05.005
Wang, Y., Mandal, A.K., Son, Y.O., Pratheeshkumar, P., Wise, J.T.F., Wang, L., Zhang, Z., Shi, X., and Chen, Z. 2018. Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicol. Appl. Pharmacol. 353, 23–30.
pubmed: 29885333 pmcid: 6281793 doi: 10.1016/j.taap.2018.06.003
Wang, W., Yang, J., Zhang, J., Liu, Y.X., Tian, C., Qu, B., Gao, C., Xin, P., Cheng, S., Zhang, W., et al. 2020. An Arabidopsis secondary metabolite directly targets expression of the bacterial type III secretion system to inhibit bacterial virulence. Cell Host Microbe 27, 601–613.
pubmed: 32272078 doi: 10.1016/j.chom.2020.03.004
Warner, D.F. and Mizrahi, V. 2006. Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. Clin. Microbiol. Rev. 19, 558–570.
pubmed: 16847086 pmcid: 1539104 doi: 10.1128/CMR.00060-05
Wayne, L.G. and Hayes, L.G. 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun. 64, 2062–2069.
pubmed: 8675308 pmcid: 174037 doi: 10.1128/iai.64.6.2062-2069.1996
World Health Organization, WHO. 2021. Global tuberculosis report 2020. World Health Organization, Geneva, Switzerland.
Xie, Z., Siddiqi, N., and Rubin, E.J. 2005. Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 49, 4778–4780.
pubmed: 16251329 pmcid: 1280169 doi: 10.1128/AAC.49.11.4778-4780.2005
Zumla, A., Nahid, P., and Cole, S.T. 2013. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 12, 388–404.
pubmed: 23629506 doi: 10.1038/nrd4001

Auteurs

Yongjie Zhao (Y)

School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, China.

Shengwen Shang (S)

School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, China.

Ya Song (Y)

School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, China.

Tianyue Li (T)

School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, China.

Mingliang Han (M)

School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, China.

Yuexuan Qin (Y)

School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, China.

Meili Wei (M)

School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, China.

Jun Xi (J)

School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, China. luckymq2014@foxmail.com.

Bikui Tang (B)

School of Life Science, Anhui Province Key Laboratory of Immunology in Chronic Diseases, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, China. bikui_tang@163.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH