A Tunable, Simplified Model for Biological Latch Mediated Spring Actuated Systems.


Journal

Integrative organismal biology (Oxford, England)
ISSN: 2517-4843
Titre abrégé: Integr Org Biol
Pays: England
ID NLM: 101767733

Informations de publication

Date de publication:
2022
Historique:
received: 10 03 2022
revised: 01 06 2022
accepted: 26 07 2022
entrez: 5 9 2022
pubmed: 6 9 2022
medline: 6 9 2022
Statut: epublish

Résumé

We develop a model of latch-mediated spring actuated (LaMSA) systems relevant to comparative biomechanics and bioinspired design. The model contains five components: two motors (muscles), a spring, a latch, and a load mass. One motor loads the spring to store elastic energy and the second motor subsequently removes the latch, which releases the spring and causes movement of the load mass. We develop freely available software to accompany the model, which provides an extensible framework for simulating LaMSA systems. Output from the simulation includes information from the loading and release phases of motion, which can be used to calculate kinematic performance metrics that are important for biomechanical function. In parallel, we simulate a comparable, directly actuated system that uses the same motor and mass combinations as the LaMSA simulations. By rapidly iterating through biologically relevant input parameters to the model, simulated kinematic performance differences between LaMSA and directly actuated systems can be used to explore the evolutionary dynamics of biological LaMSA systems and uncover design principles for bioinspired LaMSA systems. As proof of principle of this concept, we compare a LaMSA simulation to a directly actuated simulation that includes either a Hill-type force-velocity trade-off or muscle activation dynamics, or both. For the biologically-relevant range of parameters explored, we find that the muscle force-velocity trade-off and muscle activation have similar effects on directly actuated performance. Including both of these dynamic muscle properties increases the accelerated mass range where a LaMSA system outperforms a directly actuated one.

Identifiants

pubmed: 36060863
doi: 10.1093/iob/obac032
pii: obac032
pmc: PMC9434652
doi:

Types de publication

Journal Article

Langues

eng

Pagination

obac032

Subventions

Organisme : NIGMS NIH HHS
ID : R35 GM142588
Pays : United States

Informations de copyright

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

Références

J R Soc Interface. 2020 Jul;17(168):20200070
pubmed: 32693743
Proc Biol Sci. 2018 Aug 29;285(1885):
pubmed: 30158304
Proc Biol Sci. 2016 Sep 14;283(1838):
pubmed: 27629031
Proc Biol Sci. 2017 Jan 25;284(1847):
pubmed: 28100817
J Exp Biol. 1999 Dec;202(Pt 23):3325-32
pubmed: 10562515
Integr Comp Biol. 2019 Dec 1;59(6):1609-1618
pubmed: 31399734
Bioinspir Biomim. 2014 Mar;9(1):016014
pubmed: 24503516
J Exp Biol. 2017 Mar 1;220(Pt 5):828-836
pubmed: 27994045
J R Soc Interface. 2021 Nov;18(184):20210672
pubmed: 34784775
J Exp Biol. 2019 Aug 9;222(Pt 15):
pubmed: 31399509
Sci Rep. 2020 Jun 1;10(1):8855
pubmed: 32483323
Appl Bionics Biomech. 2020 Mar 19;2020:2797486
pubmed: 32296466
Integr Comp Biol. 2019 Dec 1;59(6):1546-1558
pubmed: 31418784
Integr Comp Biol. 2019 Dec 1;59(6):1515-1524
pubmed: 31397849
Integr Comp Biol. 2019 Sep 1;59(3):705-715
pubmed: 31134268
Soft Matter. 2019 Nov 27;15(46):9579-9586
pubmed: 31724691
Integr Comp Biol. 2020 Nov 1;60(5):1193-1207
pubmed: 32386301
Bioinspir Biomim. 2012 Mar;7(1):016010
pubmed: 22345392
Proc Biol Sci. 2015 Apr 07;282(1804):20143088
pubmed: 25716791
PLoS Biol. 2019 Mar 12;17(3):e3000155
pubmed: 30860993
Integr Comp Biol. 2019 Dec 1;59(6):1597-1608
pubmed: 31406979
J Exp Biol. 2019 Jun 17;222(Pt 12):
pubmed: 31113839
Sci Adv. 2020 Mar 25;6(13):eaay1950
pubmed: 32232147
R Soc Open Sci. 2018 Dec 12;5(12):181447
pubmed: 30662749
R Soc Open Sci. 2016 Jul 20;3(7):160313
pubmed: 27493785
J Exp Biol. 2021 Apr 15;224(8):
pubmed: 33914038
J R Soc Interface. 2018 Mar;15(140):
pubmed: 29514987
Sci Robot. 2021 Jan 20;6(50):
pubmed: 34043578
Elife. 2018 Aug 09;7:
pubmed: 30091704
Proc Natl Acad Sci U S A. 2020 May 12;117(19):10445-10454
pubmed: 32341147
J Biomech. 2020 Jun 23;107:109842
pubmed: 32517861
Integr Comp Biol. 2019 Dec 1;59(6):1573-1585
pubmed: 31304967
IEEE Trans Neural Syst Rehabil Eng. 2019 Mar;27(3):487-496
pubmed: 30794186
Proc Biol Sci. 2003 Jul 22;270(1523):1493-8
pubmed: 12965015
Science. 2018 Apr 27;360(6387):
pubmed: 29700237
iScience. 2018 Oct 26;8:271-282
pubmed: 30344051
Evolution. 2017 May;71(5):1397-1405
pubmed: 28230239
J R Soc Interface. 2017 Jul;14(132):
pubmed: 28747394

Auteurs

Andrés Cook (A)

Department of Physics, Harvey Mudd College, Claremont, CA 91711.

Kaanthi Pandhigunta (K)

Department of Physics, Harvey Mudd College, Claremont, CA 91711.

Mason A Acevedo (MA)

Department of Physics, Harvey Mudd College, Claremont, CA 91711.

Adam Walker (A)

Department of Physics, Harvey Mudd College, Claremont, CA 91711.

Rosalie L Didcock (RL)

Department of Physics, Harvey Mudd College, Claremont, CA 91711.

Jackson T Castro (JT)

Department of Physics, Harvey Mudd College, Claremont, CA 91711.

Declan O'Neill (D)

Department of Physics, Harvey Mudd College, Claremont, CA 91711.

Raghav Acharya (R)

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318.

M Saad Bhamla (MS)

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318.

Philip S L Anderson (PSL)

Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

Mark Ilton (M)

Department of Physics, Harvey Mudd College, Claremont, CA 91711.

Classifications MeSH