Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers.
Alzheimer’s disease
Amyloid-beta
Cerebrospinal fluid
GWAS
Tau
Journal
Acta neuropathologica
ISSN: 1432-0533
Titre abrégé: Acta Neuropathol
Pays: Germany
ID NLM: 0412041
Informations de publication
Date de publication:
11 2022
11 2022
Historique:
received:
16
02
2022
accepted:
07
06
2022
revised:
18
05
2022
pubmed:
7
9
2022
medline:
12
10
2022
entrez:
6
9
2022
Statut:
ppublish
Résumé
Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
Identifiants
pubmed: 36066633
doi: 10.1007/s00401-022-02454-z
pii: 10.1007/s00401-022-02454-z
pmc: PMC9547780
doi:
Substances chimiques
Amyloid beta-Peptides
0
Apolipoproteins E
0
Biomarkers
0
Cell Cycle Proteins
0
GMNC protein, human
0
Peptide Fragments
0
tau Proteins
0
Types de publication
Journal Article
Meta-Analysis
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
821-842Subventions
Organisme : NIA NIH HHS
ID : R01 AG044546
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG064877
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG053303
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG015801
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG058922
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG058501
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG064614
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
(2021) The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res 49:D325–D334. https://doi.org/10.1093/nar/gkaa1113
Alcolea D, Martínez-Lage P, Sánchez-Juan P, Olazarán J, Antúnez C, Izagirre A et al (2015) Amyloid precursor protein metabolism and inflammation markers in preclinical Alzheimer disease. Neurology 85:626–633. https://doi.org/10.1212/wnl.0000000000001859
doi: 10.1212/wnl.0000000000001859
pubmed: 26180139
Alcolea D, Pegueroles J, Muñoz L, Camacho V, López-Mora D, Fernández-León A et al (2019) Agreement of amyloid PET and CSF biomarkers for Alzheimer’s disease on Lumipulse. Ann Clin Transl Neurol 6:1815–1824. https://doi.org/10.1002/acn3.50873
doi: 10.1002/acn3.50873
pubmed: 31464088
pmcid: 6764494
Almdahl IS, Lauridsen C, Selnes P, Kalheim LF, Coello C, Gajdzik B et al (2017) Cerebrospinal fluid levels of amyloid beta 1–43 mirror 1–42 in relation to imaging biomarkers of Alzheimer’s disease. Front Aging Neurosci 9:9. https://doi.org/10.3389/fnagi.2017.00009
doi: 10.3389/fnagi.2017.00009
pubmed: 28223932
pmcid: 5293760
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. https://doi.org/10.1038/75556
doi: 10.1038/75556
pubmed: 10802651
pmcid: 3037419
Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N et al (2022) New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet 54:412–436. https://doi.org/10.1038/s41588-022-01024-z
doi: 10.1038/s41588-022-01024-z
pubmed: 35379992
pmcid: 9005347
Benner C, Havulinna AS, Järvelin MR, Salomaa V, Ripatti S, Pirinen M (2017) Prospects of fine-mapping trait-associated genomic regions by using summary statistics from genome-wide association studies. Am J Hum Genet 101:539–551. https://doi.org/10.1016/j.ajhg.2017.08.012
doi: 10.1016/j.ajhg.2017.08.012
pubmed: 28942963
pmcid: 5630179
Bettcher BM, Tansey MG, Dorothée G, Heneka MT (2021) Peripheral and central immune system crosstalk in Alzheimer disease—a research prospectus. Nat Rev Neurol 17:689–701. https://doi.org/10.1038/s41582-021-00549-x
doi: 10.1038/s41582-021-00549-x
pubmed: 34522039
pmcid: 8439173
Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Patterson N et al (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47:291–295. https://doi.org/10.1038/ng.3211
doi: 10.1038/ng.3211
pubmed: 25642630
pmcid: 4495769
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. https://doi.org/10.1186/s13742-015-0047-8
doi: 10.1186/s13742-015-0047-8
pubmed: 26251698
pmcid: 4527218
Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen KV et al (2013) Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry 18:1225–1234. https://doi.org/10.1038/mp.2013.1
doi: 10.1038/mp.2013.1
pubmed: 23399914
pmcid: 3807661
Cruchaga C, Kauwe JS, Harari O, Jin SC, Cai Y, Karch CM et al (2013) GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron 78:256–268. https://doi.org/10.1016/j.neuron.2013.02.026
doi: 10.1016/j.neuron.2013.02.026
pubmed: 23562540
pmcid: 3664945
Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A et al (2016) Next-generation genotype imputation service and methods. Nat Genet 48:1284–1287. https://doi.org/10.1038/ng.3656
doi: 10.1038/ng.3656
pubmed: 27571263
pmcid: 5157836
de Leeuw CA, Mooij JM, Heskes T, Posthuma D (2015) MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol 11:e1004219. https://doi.org/10.1371/journal.pcbi.1004219
doi: 10.1371/journal.pcbi.1004219
pubmed: 25885710
pmcid: 4401657
De Roeck A, Van Broeckhoven C, Sleegers K (2019) The role of ABCA7 in Alzheimer’s disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathol 138:201–220. https://doi.org/10.1007/s00401-019-01994-1
doi: 10.1007/s00401-019-01994-1
pubmed: 30903345
pmcid: 6660495
de Rojas I, Moreno-Grau S, Tesi N, Grenier-Boley B, Andrade V, Jansen IE et al (2021) Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores. Nat Commun 12:3417. https://doi.org/10.1038/s41467-021-22491-8
doi: 10.1038/s41467-021-22491-8
pubmed: 34099642
pmcid: 8184987
Deming Y, Li Z, Kapoor M, Harari O, Del-Aguila JL, Black K et al (2017) Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol 133:839–856. https://doi.org/10.1007/s00401-017-1685-y
doi: 10.1007/s00401-017-1685-y
pubmed: 28247064
pmcid: 5613285
El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C et al (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438. https://doi.org/10.1038/nm1555
doi: 10.1038/nm1555
pubmed: 17351623
Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J et al (2020) The MRC IEU OpenGWAS data infrastructure. bioRxiv. https://doi.org/10.1101/2020.08.10.244293
doi: 10.1101/2020.08.10.244293
Fitz NF, Nam KN, Wolfe CM, Letronne F, Playso BE, Iordanova BE et al (2021) Phospholipids of APOE lipoproteins activate microglia in an isoform-specific manner in preclinical models of Alzheimer’s disease. Nat Commun 12:3416. https://doi.org/10.1038/s41467-021-23762-0
doi: 10.1038/s41467-021-23762-0
pubmed: 34099706
pmcid: 8184801
Fladby T, Pålhaugen L, Selnes P, Waterloo K, Bråthen G, Hessen E et al (2017) Detecting at-risk Alzheimer’s disease cases. J Alzheimers Dis 60:97–105. https://doi.org/10.3233/jad-170231
doi: 10.3233/jad-170231
pubmed: 28826181
pmcid: 5611830
Franzmeier N, Rubinski A, Neitzel J, Ewers M, Weiner MW, Aisen P et al (2019) The BIN1 rs744373 SNP is associated with increased tau-PET levels and impaired memory. Nat Commun 10:1766. https://doi.org/10.1038/s41467-019-09564-5
doi: 10.1038/s41467-019-09564-5
pubmed: 30992433
pmcid: 6467911
Geijselaers SLC, Aalten P, Ramakers I, De Deyn PP, Heijboer AC, Koek HL et al (2018) Association of cerebrospinal fluid (CSF) insulin with cognitive performance and CSF biomarkers of Alzheimer’s disease. J Alzheimers Dis 61:309–320. https://doi.org/10.3233/jad-170522
doi: 10.3233/jad-170522
pubmed: 29154275
Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C et al (2014) Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet 10:e1004383. https://doi.org/10.1371/journal.pgen.1004383
doi: 10.1371/journal.pgen.1004383
pubmed: 24830394
pmcid: 4022491
Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706. https://doi.org/10.1038/349704a0
doi: 10.1038/349704a0
pubmed: 1671712
Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645. https://doi.org/10.1176/appi.ajp.160.4.636
doi: 10.1176/appi.ajp.160.4.636
pubmed: 12668349
Grimmer T, Riemenschneider M, Förstl H, Henriksen G, Klunk WE, Mathis CA et al (2009) Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiatry 65:927–934. https://doi.org/10.1016/j.biopsych.2009.01.027
doi: 10.1016/j.biopsych.2009.01.027
pubmed: 19268916
pmcid: 2700302
Hammond TR, Marsh SE, Stevens B (2019) Immune Signaling in Neurodegeneration. Immunity 50:955–974. https://doi.org/10.1016/j.immuni.2019.03.016
doi: 10.1016/j.immuni.2019.03.016
pubmed: 30995509
pmcid: 6822103
Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science (New York, NY) 256:184–185. https://doi.org/10.1126/science.1566067
doi: 10.1126/science.1566067
He Z, Guo JL, McBride JD, Narasimhan S, Kim H, Changolkar L et al (2018) Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med 24:29–38. https://doi.org/10.1038/nm.4443
doi: 10.1038/nm.4443
pubmed: 29200205
Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife. https://doi.org/10.7554/eLife.34408
doi: 10.7554/eLife.34408
pubmed: 29846171
pmcid: 5976434
Husain MA, Laurent B, Plourde M (2021) APOE and Alzheimer’s disease: from lipid transport to physiopathology and therapeutics. Front Neurosci. https://doi.org/10.3389/fnins.2021.630502
doi: 10.3389/fnins.2021.630502
pubmed: 33679311
pmcid: 7925634
Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S et al (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 51:404–413. https://doi.org/10.1038/s41588-018-0311-9
doi: 10.1038/s41588-018-0311-9
pubmed: 30617256
pmcid: 6836675
Jessen F, Spottke A, Boecker H, Brosseron F, Buerger K, Catak C et al (2018) Design and first baseline data of the DZNE multicenter observational study on predementia Alzheimer’s disease (DELCODE). Alzheimer’s Res Ther 10:15. https://doi.org/10.1186/s13195-017-0314-2
doi: 10.1186/s13195-017-0314-2
Johansson JU, Brubaker WD, Javitz H, Bergen AW, Nishita D, Trigunaite A et al (2018) Peripheral complement interactions with amyloid β peptide in Alzheimer’s disease: polymorphisms, structure, and function of complement receptor 1. Alzheimer’s Dementia 14:1438–1449. https://doi.org/10.1016/j.jalz.2018.04.003
doi: 10.1016/j.jalz.2018.04.003
pubmed: 29792870
Kaipainen A, Jääskeläinen O, Liu Y, Haapalinna F, Nykänen N, Vanninen R et al (2020) Cerebrospinal fluid and MRI biomarkers in neurodegenerative diseases: a retrospective memory clinic-based study. J Alzheimers Dis 75:751–765. https://doi.org/10.3233/jad-200175
doi: 10.3233/jad-200175
pubmed: 32310181
pmcid: 7369056
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–443. https://doi.org/10.1038/s41586-020-2308-7
doi: 10.1038/s41586-020-2308-7
pubmed: 32461654
pmcid: 7334197
Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712. https://doi.org/10.1038/nrd3505
doi: 10.1038/nrd3505
pubmed: 21852788
Kerimov N, Hayhurst JD, Peikova K, Manning JR, Walter P, Kolberg L et al (2021) A compendium of uniformly processed human gene expression and splicing quantitative trait loci. Nat Genet 53:1290–1299. https://doi.org/10.1038/s41588-021-00924-w
doi: 10.1038/s41588-021-00924-w
pubmed: 34493866
pmcid: 8423625
Kloske CM, Wilcock DM (2020) The important interface between apolipoprotein E and neuroinflammation in Alzheimer’s disease. Front Immunol. https://doi.org/10.3389/fimmu.2020.00754
doi: 10.3389/fimmu.2020.00754
pubmed: 32425941
pmcid: 7203730
Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H (2020) gprofiler2–an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. F1000Res. https://doi.org/10.12688/f1000research.24956.2
doi: 10.12688/f1000research.24956.2
pubmed: 33564394
pmcid: 7859841
Kornhuber J, Schmidtke K, Frolich L, Perneczky R, Wolf S, Hampel H et al (2009) Early and differential diagnosis of dementia and mild cognitive impairment: design and cohort baseline characteristics of the German Dementia Competence Network. Dement Geriatr Cogn Disord 27:404–417. https://doi.org/10.1159/000210388
doi: 10.1159/000210388
pubmed: 19339779
Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51:414–430. https://doi.org/10.1038/s41588-019-0358-2
doi: 10.1038/s41588-019-0358-2
pubmed: 30820047
pmcid: 6463297
Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS ONE 5:e13984. https://doi.org/10.1371/journal.pone.0013984
doi: 10.1371/journal.pone.0013984
pubmed: 21085593
pmcid: 2981572
Minami SS, Min S-W, Krabbe G, Wang C, Zhou Y, Asgarov R et al (2014) Progranulin protects against amyloid β deposition and toxicity in Alzheimer’s disease mouse models. Nat Med 20:1157–1164. https://doi.org/10.1038/nm.3672
doi: 10.1038/nm.3672
pubmed: 25261995
pmcid: 4196723
Miyagawa T, Ebinuma I, Morohashi Y, Hori Y, Young Chang M, Hattori H et al (2016) BIN1 regulates BACE1 intracellular trafficking and amyloid-β production. Hum Mol Genet 25:2948–2958. https://doi.org/10.1093/hmg/ddw146
doi: 10.1093/hmg/ddw146
pubmed: 27179792
Mulder C, Verwey NA, van der Flier WM, Bouwman FH, Kok A, van Elk EJ (2010) Amyloid-beta(1–42), total tau, and phosphorylated tau as cerebrospinal fluid biomarkers for the diagnosis of Alzheimer disease. Clin Chem 56:248–253. https://doi.org/10.1373/clinchem.2009.130518
doi: 10.1373/clinchem.2009.130518
pubmed: 19833838
Najar J, van der Lee SJ, Joas E, Wetterberg H, Hardy J, Guerreiro R et al (2021) Polygenic risk scores for Alzheimer’s disease are related to dementia risk in APOE ɛ4 negatives. Alzheimer’s Dementia: Diagn Assess Dis Monitor 13:e12142. https://doi.org/10.1002/dad2.12142
doi: 10.1002/dad2.12142
Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 15:673–684. https://doi.org/10.1016/s1474-4422(16)00070-3
doi: 10.1016/s1474-4422(16)00070-3
pubmed: 27068280
Ramirez A, van der Flier WM, Herold C, Ramonet D, Heilmann S, Lewczuk P et al (2014) SUCLG2 identified as both a determinator of CSF Aβ1-42 levels and an attenuator of cognitive decline in Alzheimer’s disease. Hum Mol Genet 23:6644–6658. https://doi.org/10.1093/hmg/ddu372
doi: 10.1093/hmg/ddu372
pubmed: 25027320
pmcid: 4240204
Sartori M, Mendes T, Desai S, Lasorsa A, Herledan A, Malmanche N et al (2019) BIN1 recovers tauopathy-induced long-term memory deficits in mice and interacts with Tau through Thr(348) phosphorylation. Acta Neuropathol 138:631–652. https://doi.org/10.1007/s00401-019-02017-9
doi: 10.1007/s00401-019-02017-9
pubmed: 31065832
pmcid: 6778065
Sherrington R, Froelich S, Sorbi S, Campion D, Chi H, Rogaeva EA et al (1996) Alzheimer’s disease associated with mutations in presenilin 2 is rare and variably penetrant. Hum Mol Genet 5:985–988. https://doi.org/10.1093/hmg/5.7.985
doi: 10.1093/hmg/5.7.985
pubmed: 8817335
Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760. https://doi.org/10.1038/375754a0
doi: 10.1038/375754a0
pubmed: 7596406
Shi Y, Holtzman DM (2018) Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 18:759–772. https://doi.org/10.1038/s41577-018-0051-1
doi: 10.1038/s41577-018-0051-1
pubmed: 30140051
pmcid: 6425488
Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W et al (2017) ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549:523–527. https://doi.org/10.1038/nature24016
doi: 10.1038/nature24016
pubmed: 28959956
pmcid: 5641217
Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J et al (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet 49:1373–1384. https://doi.org/10.1038/ng.3916
doi: 10.1038/ng.3916
pubmed: 28714976
pmcid: 5669039
Somers C, Struyfs H, Goossens J, Niemantsverdriet E, Luyckx J, De Roeck N et al (2016) A decade of cerebrospinal fluid biomarkers for Alzheimer’s disease in Belgium. J Alzheimers Dis 54:383–395. https://doi.org/10.3233/jad-151097
doi: 10.3233/jad-151097
pubmed: 27567807
Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH et al (2003) Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 289:2094–2103. https://doi.org/10.1001/jama.289.16.2094
doi: 10.1001/jama.289.16.2094
pubmed: 12709467
Taliun D, Harris D, Kessler M, Carlson J, Szpiech Z, Torres R et al (2019) Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. bioRxiv. https://doi.org/10.1101/563866
doi: 10.1101/563866
Therriault J, Benedet AL, Pascoal TA, Mathotaarachchi S, Chamoun M, Savard M et al (2020) Association of apolipoprotein E ε4 with medial temporal tau independent of amyloid-β. JAMA Neurol 77:470–479. https://doi.org/10.1001/jamaneurol.2019.4421
doi: 10.1001/jamaneurol.2019.4421
pubmed: 31860000
Tijms BM, Gobom J, Reus L, Jansen I, Hong S, Dobricic V et al (2020) Pathophysiological subtypes of Alzheimer’s disease based on cerebrospinal fluid proteomics. Brain 143:3776–3792. https://doi.org/10.1093/brain/awaa325
doi: 10.1093/brain/awaa325
pubmed: 33439986
pmcid: 7805814
Tijms BM, Willemse EAJ, Zwan MD, Mulder SD, Visser PJ, van Berckel BNM et al (2018) Unbiased approach to counteract upward drift in cerebrospinal fluid amyloid-β 1–42 analysis results. Clin Chem 64:576–585. https://doi.org/10.1373/clinchem.2017.281055
doi: 10.1373/clinchem.2017.281055
pubmed: 29208658
Uddin MS, Kabir MT, Begum MM, Islam MS, Behl T, Ashraf GM (2021) Exploring the role of CLU in the pathogenesis of Alzheimer’s disease. Neurotox Res 39:2108–2119. https://doi.org/10.1007/s12640-020-00271-4
doi: 10.1007/s12640-020-00271-4
pubmed: 32820456
van der Kant R, Goldstein LSB, Ossenkoppele R (2020) Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci 21:21–35. https://doi.org/10.1038/s41583-019-0240-3
doi: 10.1038/s41583-019-0240-3
pubmed: 31780819
Vojinovic D, Adams HH, Jian X, Yang Q, Smith AV, Bis JC et al (2018) Genome-wide association study of 23,500 individuals identifies 7 loci associated with brain ventricular volume. Nat Commun 9:3945. https://doi.org/10.1038/s41467-018-06234-w
doi: 10.1038/s41467-018-06234-w
pubmed: 30258056
pmcid: 6158214
Voskobiynyk Y, Roth JR, Cochran JN, Rush T, Carullo NV, Mesina JS et al (2020) Alzheimer’s disease risk gene BIN1 induces Tau-dependent network hyperexcitability. Elife. https://doi.org/10.7554/eLife.57354
doi: 10.7554/eLife.57354
pubmed: 32657270
pmcid: 7392604
Wallace C (2020) Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses. PLoS Genet 16:e1008720. https://doi.org/10.1371/journal.pgen.1008720
doi: 10.1371/journal.pgen.1008720
pubmed: 32310995
pmcid: 7192519
Wang C, Najm R, Xu Q, Jeong DE, Walker D, Balestra ME et al (2018) Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med 24:647–657. https://doi.org/10.1038/s41591-018-0004-z
doi: 10.1038/s41591-018-0004-z
pubmed: 29632371
pmcid: 5948154
Watanabe K, Taskesen E, van Bochoven A, Posthuma D (2017) Functional mapping and annotation of genetic associations with FUMA. Nat Commun 8:1826. https://doi.org/10.1038/s41467-017-01261-5
doi: 10.1038/s41467-017-01261-5
pubmed: 29184056
pmcid: 5705698
Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Rongve A et al (2020) Largest GWAS (N=1,126,563) of Alzheimer’s disease implicates microglia and immune cells. medRxiv. https://doi.org/10.1101/2020.11.20.20235275
doi: 10.1101/2020.11.20.20235275
Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics (Oxford, England) 26:2190–2191. https://doi.org/10.1093/bioinformatics/btq340
doi: 10.1093/bioinformatics/btq340
Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ, Quigg RJ et al (2002) Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci USA 99:10837–10842. https://doi.org/10.1073/pnas.162350199
doi: 10.1073/pnas.162350199
pubmed: 12119423
pmcid: 125059
Yang C, Farias FHG, Ibanez L, Suhy A, Sadler B, Fernandez MV et al (2021) Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat Neurosci 24:1302–1312. https://doi.org/10.1038/s41593-021-00886-6
doi: 10.1038/s41593-021-00886-6
pubmed: 34239129
pmcid: 8521603
Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82. https://doi.org/10.1016/j.ajhg.2010.11.011
doi: 10.1016/j.ajhg.2010.11.011
pubmed: 21167468
pmcid: 3014363
Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M (2016) TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 91:328–340. https://doi.org/10.1016/j.neuron.2016.06.015
doi: 10.1016/j.neuron.2016.06.015
pubmed: 27477018
Yiannopoulou KG, Anastasiou AI, Zachariou V, Pelidou SH (2019) Reasons for failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research. Biomedicines. https://doi.org/10.3390/biomedicines7040097
doi: 10.3390/biomedicines7040097
pubmed: 31835422
pmcid: 6966425
Young AMH, Kumasaka N, Calvert F, Hammond TR, Knights A, Panousis N et al (2021) A map of transcriptional heterogeneity and regulatory variation in human microglia. Nat Genet 53:861–868. https://doi.org/10.1038/s41588-021-00875-2
doi: 10.1038/s41588-021-00875-2
pubmed: 34083789
pmcid: 7610960
Zettergren A, Höglund K, Kern S, Thorvaldsson V, Johan Skoog M, Hansson O et al (2019) Association of IL1RAP-related genetic variation with cerebrospinal fluid concentration of Alzheimer-associated tau protein. Sci Rep 9:2460. https://doi.org/10.1038/s41598-018-36650-3
doi: 10.1038/s41598-018-36650-3
pubmed: 30792413
pmcid: 6385252
Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K et al (2015) Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci 18:978–987. https://doi.org/10.1038/nn.4025
doi: 10.1038/nn.4025
pubmed: 26005850
pmcid: 4482781
Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC et al (2017) LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics (Oxford, England) 33:272–279. https://doi.org/10.1093/bioinformatics/btw613
doi: 10.1093/bioinformatics/btw613
Zhu X-C, Yu J-T, Jiang T, Wang P, Cao L, Tan L (2015) CR1 in Alzheimer’s disease. Mol Neurobiol 51:753–765. https://doi.org/10.1007/s12035-014-8723-8
doi: 10.1007/s12035-014-8723-8
pubmed: 24794147