Advances in the management of peritoneal malignancies.
Journal
Nature reviews. Clinical oncology
ISSN: 1759-4782
Titre abrégé: Nat Rev Clin Oncol
Pays: England
ID NLM: 101500077
Informations de publication
Date de publication:
11 2022
11 2022
Historique:
accepted:
29
07
2022
pubmed:
8
9
2022
medline:
25
10
2022
entrez:
7
9
2022
Statut:
ppublish
Résumé
Peritoneal surface malignancies (PSMs) are usually associated with a poor prognosis. Nonetheless, in line with advances in the management of most abdominopelvic metastatic diseases, considerable progress has been made over the past decade. An improved understanding of disease biology has led to the more accurate prediction of neoplasia aggressiveness and the treatment response and has been reflected in the proposal of new classification systems. Achieving complete cytoreductive surgery remains the cornerstone of curative-intent treatment of PSMs. Alongside centralization in expert centres, enabling the delivery of multimodal and multidisciplinary strategies, preoperative management is a crucial step in order to select patients who are most likely to benefit from surgery. Depending on the specific PSM, the role of intraperitoneal chemotherapy and of perioperative systemic chemotherapy, in particular, in the neoadjuvant setting, is established in certain scenarios but questioned in several others, although more prospective data are required. In this Review, we describe advances in all aspects of the management of PSMs including disease biology, assessment and improvement of disease resectability, perioperative management, systemic therapy and pre-emptive management, and we speculate on future research directions.
Identifiants
pubmed: 36071285
doi: 10.1038/s41571-022-00675-5
pii: 10.1038/s41571-022-00675-5
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
698-718Informations de copyright
© 2022. Springer Nature Limited.
Références
Cortés-Guiral, D. et al. Primary and metastatic peritoneal surface malignancies. Nat. Rev. Dis. Prim. 7, 91 (2021).
pubmed: 34916522
doi: 10.1038/s41572-021-00326-6
Sadeghi, B. et al. Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer 88, 358–363 (2000).
pubmed: 10640968
doi: 10.1002/(SICI)1097-0142(20000115)88:2<358::AID-CNCR16>3.0.CO;2-O
Chu, D. Z., Lang, N. P., Thompson, C., Osteen, P. K. & Westbrook, K. C. Peritoneal carcinomatosis in nongynecologic malignancy. A prospective study of prognostic factors. Cancer 63, 364–367 (1989).
pubmed: 2910444
doi: 10.1002/1097-0142(19890115)63:2<364::AID-CNCR2820630228>3.0.CO;2-V
Jayne, D. G., Fook, S., Loi, C. & Seow-Choen, F. Peritoneal carcinomatosis from colorectal cancer. Br. J. Surg. 89, 1545–1550 (2002).
pubmed: 12445064
doi: 10.1046/j.1365-2168.2002.02274.x
Sugarbaker, P. H. Peritonectomy procedures. Ann. Surg. 221, 29–42 (1995).
pubmed: 7826158
pmcid: 1234492
doi: 10.1097/00000658-199501000-00004
Arquillière, J., Glehen, O. & Passot, G. Cytoreductive surgery in peritoneal carcinomatosis. J. Visc. Surg. 158, 258–264 (2021).
pubmed: 33487563
doi: 10.1016/j.jviscsurg.2020.12.012
Chi, D. S. et al. Improved optimal cytoreduction rates for stages IIIC and IV epithelial ovarian, fallopian tube, and primary peritoneal cancer: a change in surgical approach. Gynecol. Oncol. 94, 650–654 (2004).
pubmed: 15350354
doi: 10.1016/j.ygyno.2004.01.029
Glehen, O., Mohamed, F. & Gilly, F. N. Peritoneal carcinomatosis from digestive tract cancer: new management by cytoreductive surgery and intraperitoneal chemohyperthermia. Lancet Oncol. 5, 219–228 (2004).
pubmed: 15050953
doi: 10.1016/S1470-2045(04)01425-1
Glehen, O. et al. Toward curative treatment of peritoneal carcinomatosis from nonovarian origin by cytoreductive surgery combined with perioperative intraperitoneal chemotherapy: a multi-institutional study of 1290 patients. Cancer 116, 5608–5618 (2010).
pubmed: 20737573
doi: 10.1002/cncr.25356
Speeten, K. V., der, Lemoine, L. & Sugarbaker, P. Overview of the optimal perioperative intraperitoneal chemotherapy regimens used in current clinical practice. Pleura Peritoneum 2, 63–72 (2017).
pubmed: 30911634
pmcid: 6405035
doi: 10.1515/pp-2017-0003
Bristow, R. E., Tomacruz, R. S., Armstrong, D. K., Trimble, E. L. & Montz, F. J. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J. Clin. Oncol. 20, 1248–1259 (2002).
pubmed: 11870167
doi: 10.1200/JCO.2002.20.5.1248
Elias, D. et al. Peritoneal colorectal carcinomatosis treated with surgery and perioperative intraperitoneal chemotherapy: retrospective analysis of 523 patients from a multicentric French study. J. Clin. Oncol. 28, 63–68 (2010).
pubmed: 19917863
doi: 10.1200/JCO.2009.23.9285
Kusamura, S. et al. The role of hyperthermic intraperitoneal chemotherapy in pseudomyxoma peritonei after cytoreductive surgery. JAMA Surg. 156, e206363 (2021).
pubmed: 33502455
pmcid: 7841579
doi: 10.1001/jamasurg.2020.6363
Jacquet, P. & Sugarbaker, P. H. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat. Res. 82, 359–374 (1996).
pubmed: 8849962
doi: 10.1007/978-1-4613-1247-5_23
Goere, D. et al. Complete cytoreductive surgery plus HIPEC for peritoneal metastases from unusual cancer sites of origin: results from a worldwide analysis issue of the peritoneal surface oncology group international (PSOGI). Int. J. Hyperthermia 33, 520–527 (2017).
pubmed: 28540827
doi: 10.1080/02656736.2017.1301576
Chirurgie, A. Fde et al. Peritoneal carcinomatosis from gastric cancer: a multi-institutional study of 159 patients treated by cytoreductive surgery combined with perioperative intraperitoneal chemotherapy. Ann. Surg. Oncol. 17, 2370–2377 (2010).
doi: 10.1245/s10434-010-1039-7
Bakrin, N. et al. Peritoneal carcinomatosis treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) for advanced ovarian carcinoma: a French multicentre retrospective cohort study of 566 patients. Eur. J. Surg. Oncol. 39, 1435–1443 (2013).
pubmed: 24209430
doi: 10.1016/j.ejso.2013.09.030
Villeneuve, L. et al. A new internet tool to report peritoneal malignancy extent. PeRitOneal malignancy stage evaluation (PROMISE) application. Eur. J. Surg. Oncol. 42, 877–882 (2016).
pubmed: 27067193
doi: 10.1016/j.ejso.2016.03.015
Chapel, D. B. et al. Malignant peritoneal mesothelioma: prognostic significance of clinical and pathologic parameters and validation of a nuclear-grading system in a multi-institutional series of 225 cases. Mod. Pathol. 34, 380–395 (2020).
pubmed: 33060816
doi: 10.1038/s41379-020-00688-4
Benzerdjeb, N. et al. Combined grade and nuclear grade are prognosis predictors of epithelioid malignant peritoneal mesothelioma: a multi-institutional retrospective study. Virchows Arch. 479, 927–936 (2021).
pubmed: 34169365
doi: 10.1007/s00428-021-03144-z
Panou, V. et al. Frequency of germline mutations in cancer susceptibility genes in malignant mesothelioma. J. Clin. Oncol. 36, 2863–2871 (2018).
pubmed: 30113886
pmcid: 6804864
doi: 10.1200/JCO.2018.78.5204
Chirac, P. et al. Genomic copy number alterations in 33 malignant peritoneal mesothelioma analyzed by comparative genomic hybridization array. Hum. Pathol. 55, 72–82 (2016).
pubmed: 27184482
doi: 10.1016/j.humpath.2016.04.015
Alakus, H. et al. BAP1 mutation is a frequent somatic event in peritoneal malignant mesothelioma. J. Transl. Med. 13, 122 (2015).
pubmed: 25889843
pmcid: 4422481
doi: 10.1186/s12967-015-0485-1
Joseph, N. M. et al. Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X. Mod. Pathol. 30, 246–254 (2017).
pubmed: 27813512
doi: 10.1038/modpathol.2016.188
Leblay, N. et al. BAP1 is altered by copy number loss, mutation, and/or loss of protein expression in more than 70% of malignant peritoneal mesotheliomas. J. Thorac. Oncol. 12, 724–733 (2017).
pubmed: 28034829
doi: 10.1016/j.jtho.2016.12.019
Shrestha, R. et al. BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma. Genome Med. 11, 8 (2019).
pubmed: 30777124
pmcid: 6378747
doi: 10.1186/s13073-019-0620-3
Deraco, M. et al. In Pathology of Peritoneal Metastases (eds Glehen, O. & Bhatt, A.) 117–129 (Springer, 2020) https://doi.org/10.1007/978-981-15-3773-8_6 .
Carbone, M. et al. BAP1 and cancer. Nat. Rev. Cancer 13, 153–159 (2013).
pubmed: 23550303
pmcid: 3792854
doi: 10.1038/nrc3459
Sugarbaker, P. H. et al. Pseudomyxoma peritonei. A cancer whose biology is characterized by a redistribution phenomenon. Ann. Surg. 219, 109–111 (1994).
pubmed: 8129480
pmcid: 1243111
doi: 10.1097/00000658-199402000-00001
Carr, N. J. et al. A consensus for classification and pathologic reporting of pseudomyxoma peritonei and associated appendiceal neoplasia: the results of the Peritoneal Surface Oncology Group International (PSOGI) mModified Delphi process. Am. J. Surg. Pathol. 40, 14–26 (2016).
pubmed: 26492181
doi: 10.1097/PAS.0000000000000535
Lin, Y. L. et al. Consensuses and controversies on pseudomyxoma peritonei: a review of the published consensus statements and guidelines. Orphanet J. Rare Dis. 16, 85 (2021).
pubmed: 33581733
pmcid: 7881689
doi: 10.1186/s13023-021-01723-6
Valasek, M. A. & Pai, R. K. An update on the diagnosis, grading, and staging of appendiceal mucinous neoplasms. Adv. Anat. Pathol. 25, 38–60 (2018).
pubmed: 29016471
doi: 10.1097/PAP.0000000000000178
Levine, E. A. et al. Prognostic molecular subtypes of low-grade cancer of the appendix. J. Am. Coll. Surg. 222, 493–503 (2016).
pubmed: 26821970
doi: 10.1016/j.jamcollsurg.2015.12.012
Vaira, M. et al. In Pathology of Peritoneal Metastases (eds Glehen, O. & Bhatt, A.) 163–173 (Springer, 2020).
Su, J. et al. Prognostic molecular classification of appendiceal mucinous neoplasms treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann. Surg. Oncol. 27, 1439–1447 (2020).
pubmed: 31980985
pmcid: 7147286
doi: 10.1245/s10434-020-08210-5
Moaven, O. et al. Clinical implications of genetic signatures in appendiceal cancer patients with incomplete cytoreduction/HIPEC. Ann. Surg. Oncol. 27, 5016–5023 (2020).
pubmed: 32705511
pmcid: 7674220
doi: 10.1245/s10434-020-08841-8
Ajani, J. A. et al. Gastric adenocarcinoma. Nat. Rev. Dis. Prim. 3, 17036 (2017).
pubmed: 28569272
doi: 10.1038/nrdp.2017.36
Gao, D. et al. Cdh1 regulates cell cycle through modulating the Claspin/Chk1 and the Rb/E2F1 pathways. Mol. Biol. Cell 20, 3305–3316 (2009).
pubmed: 19477924
pmcid: 2710831
doi: 10.1091/mbc.e09-01-0092
Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).
doi: 10.1038/nature13480
Cristescu, R. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 21, 449–456 (2015).
pubmed: 25894828
doi: 10.1038/nm.3850
Wang, K. et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573–582 (2014).
pubmed: 24816253
doi: 10.1038/ng.2983
Oh, S. C. et al. Clinical and genomic landscape of gastric cancer with a mesenchymal phenotype. Nat. Commun. 9, 1777 (2018).
pubmed: 29725014
pmcid: 5934392
doi: 10.1038/s41467-018-04179-8
Tanaka, Y. et al. Multi-omic profiling of peritoneal metastases in gastric cancer identifies molecular subtypes and therapeutic vulnerabilities. Nat. Cancer 2, 962–977 (2021).
pubmed: 35121863
doi: 10.1038/s43018-021-00240-6
Wang, R. et al. Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response. Gut 69, 18–31 (2020).
pubmed: 31171626
doi: 10.1136/gutjnl-2018-318070
Bettington, M. et al. The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology 62, 367–386 (2013).
pubmed: 23339363
doi: 10.1111/his.12055
Zajac, O. et al. Tumour spheres with inverted polarity drive the formation of peritoneal metastases in patients with hypermethylated colorectal carcinomas. Nat. Cell Biol. 20, 296–306 (2018).
pubmed: 29403038
doi: 10.1038/s41556-017-0027-6
Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).
pubmed: 26457759
pmcid: 4636487
doi: 10.1038/nm.3967
Ubink, I. et al. Histopathological and molecular classification of colorectal cancer and corresponding peritoneal metastases. Br. J. Surg. 105, e204–e211 (2018).
pubmed: 29341165
doi: 10.1002/bjs.10788
Heinemann, V., Stintzing, S., Kirchner, T., Boeck, S. & Jung, A. Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat. Rev. 35, 262–271 (2009).
pubmed: 19117687
doi: 10.1016/j.ctrv.2008.11.005
Deng, G. et al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin. Cancer Res. 10, 191–195 (2004).
pubmed: 14734469
doi: 10.1158/1078-0432.CCR-1118-3
Arjona-Sanchez, A. et al. RAS mutation decreases overall survival after optimal cytoreductive surgery and hyperthermic intraperitoneal chemotherapy of colorectal peritoneal metastasis: a modification proposal of the peritoneal surface disease severity score. Ann. Surg. Oncol. 26, 2595–2604 (2019).
pubmed: 31111351
doi: 10.1245/s10434-019-07378-9
Schneider, M. A. et al. Mutations of RAS/RAF proto-oncogenes impair survival after cytoreductive surgery and HIPEC for peritoneal metastasis of colorectal origin. Ann. Surg. 268, 845–853 (2018).
pubmed: 30303876
doi: 10.1097/SLA.0000000000002899
Cohen, R., Pudlarz, T., Delattre, J.-F., Colle, R. & Andre, T. Molecular targets for the treatment of metastatic colorectal cancer. Cancers 12, 2350 (2020).
pmcid: 7563268
doi: 10.3390/cancers12092350
Pietrantonio, F. et al. ALK, ROS1, and NTRK rearrangements in metastatic colorectal cancer. J. Natl Cancer Inst. 109, djx089 (2017).
doi: 10.1093/jnci/djx089
André, T. et al. Pembrolizumab in microsatellite-instability–high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020).
pubmed: 33264544
doi: 10.1056/NEJMoa2017699
Sallum, L. F. et al. WT1, p53 and p16 expression in the diagnosis of low- and high-grade serous ovarian carcinomas and their relation to prognosis. Oncotarget 9, 15818–15827 (2018).
pubmed: 29662608
pmcid: 5882299
doi: 10.18632/oncotarget.24530
Moore, K. et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 379, 2495–2505 (2018).
pubmed: 30345884
doi: 10.1056/NEJMoa1810858
Miller, R. E. et al. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann. Oncol. 31, 1606–1622 (2020).
pubmed: 33004253
doi: 10.1016/j.annonc.2020.08.2102
Chiang, Y.-C., Lin, P.-H. & Cheng, W.-F. Homologous recombination deficiency assays in epithelial ovarian cancer: current status and future direction. Front. Oncol. 11, 675972 (2021).
pubmed: 34722237
pmcid: 8551835
doi: 10.3389/fonc.2021.675972
Ubink, I. et al. Organoids from colorectal peritoneal metastases as a platform for improving hyperthermic intraperitoneal chemotherapy. Br. J. Surg. 106, 1404–1414 (2019).
pubmed: 31197820
pmcid: 6771632
doi: 10.1002/bjs.11206
Narasimhan, V. et al. Medium-throughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy. Clin. Cancer Res. 26, 3662–3670 (2020).
pubmed: 32376656
pmcid: 8366292
doi: 10.1158/1078-0432.CCR-20-0073
Votanopoulos, K. I. et al. Appendiceal cancer patient-specific tumor organoid model for predicting chemotherapy efficacy prior to initiation of treatment: a feasibility study. Ann. Surg. Oncol. 26, 139–147 (2019).
pubmed: 30414038
doi: 10.1245/s10434-018-7008-2
Letai, A. Functional precision cancer medicine — moving beyond pure genomics. Nat. Med. 23, 1028–1035 (2017).
pubmed: 28886003
doi: 10.1038/nm.4389
Roy, P. et al. Organoids as preclinical models to improve intraperitoneal chemotherapy effectiveness for colorectal cancer patients with peritoneal metastases: preclinical models to improve HIPEC. Int. J. Pharm. 531, 143–152 (2017).
pubmed: 28803938
doi: 10.1016/j.ijpharm.2017.07.084
Mazzocchi, A. R., Rajan, S. A. P., Votanopoulos, K. I., Hall, A. R. & Skardal, A. In vitro patient-derived 3D mesothelioma tumor organoids facilitate patient-centric therapeutic screening. Sci. Rep. 8, 2886 (2018).
pubmed: 29440675
pmcid: 5811529
doi: 10.1038/s41598-018-21200-8
Votanopoulos, K. I. et al. Model of patient-specific immune-enhanced organoids for immunotherapy screening: feasibility study. Ann. Surg. Oncol. 27, 1956–1967 (2020).
pubmed: 31858299
doi: 10.1245/s10434-019-08143-8
Dhanisha, S. S., Guruvayoorappan, C., Drishya, S. & Abeesh, P. Mucins: structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit. Rev. Oncol. Hematol. 122, 98–122 (2018).
pubmed: 29458795
doi: 10.1016/j.critrevonc.2017.12.006
Rhodes, J. M. Usefulness of novel tumour markers. Ann. Oncol. 10, S118–S121 (1999).
doi: 10.1093/annonc/10.suppl_4.S118
Young, R. H. Pseudomyxoma peritonei and selected other aspects of the spread of appendiceal neoplasms. Semin. Diagn. Pathol. 21, 134–150 (2004).
pubmed: 15807473
doi: 10.1053/j.semdp.2004.12.002
O’Connell, J. T., Tomlinson, J. S., Roberts, A. A., McGonigle, K. F. & Barsky, S. H. Pseudomyxoma peritonei is a disease of MUC2-expressing goblet cells. Am. J. Pathol. 161, 551–564 (2002).
pubmed: 12163380
pmcid: 1850719
doi: 10.1016/S0002-9440(10)64211-3
Lohani, K. et al. Pseudomyxoma peritonei: inflammatory responses in the peritoneal microenvironment. Ann. Surg. Oncol. 21, 1441–1447 (2014).
pubmed: 24046117
doi: 10.1245/s10434-013-3261-6
O’Connell, J. T., Hacker, C. M. & Barsky, S. H. MUC2 is a molecular marker for pseudomyxoma peritonei. Mod. Pathol. 15, 958–972 (2002).
pubmed: 12218214
doi: 10.1097/01.MP.0000026617.52466.9F
Amini, A., Masoumi-Moghaddam, S., Ehteda, A. & Morris, D. L. Secreted mucins in pseudomyxoma peritonei: pathophysiological significance and potential therapeutic prospects. Orphanet J. Rare Dis. 9, 71 (2014).
pubmed: 24886459
pmcid: 4013295
doi: 10.1186/1750-1172-9-71
Huang, Y. et al. Intraoperative macroscopic tumour consistency is associated with overall survival after cytoreductive surgery and intraperitoneal chemotherapy for appendiceal adenocarcinoma with peritoneal metastases: a retrospective observational study. Am. J. Surg. 217, 704–712 (2019).
pubmed: 30704669
doi: 10.1016/j.amjsurg.2018.12.037
Nagtegaal, I. D. et al. The 2019 WHO classification of tumours of the digestive system. Histopathology 76, 182–188 (2020).
pubmed: 31433515
doi: 10.1111/his.13975
Benesch, M. G. K. & Mathieson, A. Epidemiology of signet ring cell adenocarcinomas. Cancers 12, 1544 (2020).
pmcid: 7352645
doi: 10.3390/cancers12061544
Berger, Y. et al. Correlation between intraoperative and pathological findings for patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann. Surg. Oncol. 26, 1103–1109 (2019).
pubmed: 30746598
doi: 10.1245/s10434-019-07219-9
Bhatt, A. et al. The pathologic peritoneal cancer index (PCI) strongly differs from the surgical PCI in peritoneal metastases arising from various primary tumors. Ann. Surg. Oncol. 10, 3–12 (2020).
Sessa, C. et al. ESMO–ESGO consensus conference recommendations on ovarian cancer: pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease. Ann. Oncol. 30, 672–705 (2019).
pubmed: 31046081
doi: 10.1093/annonc/mdz062
Bois, Adu et al. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d’Investigateurs Nationaux Pour les Etudes des Cancers de l’Ovaire (GINECO). Cancer 115, 1234–1244 (2009).
pubmed: 19189349
doi: 10.1002/cncr.24149
Harter, P. et al. Randomized trial of cytoreductive surgery for relapsed ovarian cancer. N. Engl. J. Med. 385, 2123–2131 (2021).
pubmed: 34874631
doi: 10.1056/NEJMoa2103294
Quenet, F. et al. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 22, 256–266 (2021).
pubmed: 33476595
doi: 10.1016/S1470-2045(20)30599-4
Franko, J. et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the analysis and research in cancers of the digestive system (ARCAD) database. Lancet Oncol. 17, 1709–1719 (2016).
pubmed: 27743922
doi: 10.1016/S1470-2045(16)30500-9
Elias, D. et al. Complete cytoreductive surgery plus intraperitoneal chemohyperthermia with oxaliplatin for peritoneal carcinomatosis of colorectal origin. J. Clin. Oncol. 27, 681–685 (2009).
pubmed: 19103728
doi: 10.1200/JCO.2008.19.7160
Chua, T. C. et al. Early- and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J. Clin. Oncol. 30, 2449–2456 (2012).
pubmed: 22614976
doi: 10.1200/JCO.2011.39.7166
Yan, T. D. et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for malignant peritoneal mesothelioma: multi-institutional experience. J. Clin. Oncol. 27, 6237–6242 (2009).
pubmed: 19917862
doi: 10.1200/JCO.2009.23.9640
Govaerts, K. et al. Appendiceal tumours and pseudomyxoma peritonei: literature review with PSOGI/EURACAN clinical practice guidelines for diagnosis and treatment. Eur. J. Surg. Oncol. 47, 11–35 (2021).
pubmed: 32199769
doi: 10.1016/j.ejso.2020.02.012
Kusamura, S. et al. Peritoneal mesothelioma: PSOGI/EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Eur. J. Surg. Oncol. 47, 36–59 (2021).
pubmed: 32209311
doi: 10.1016/j.ejso.2020.02.011
Ansari, N. et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in 1000 patients with perforated appendiceal epithelial tumours. Eur. J. Surg. Oncol. 42, 1035–1041 (2016).
pubmed: 27132072
doi: 10.1016/j.ejso.2016.03.017
Chia, C. S. et al. Patients with peritoneal carcinomatosis from gastric cancer treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: is cure a possibility? Ann. Surg. Oncol. 23, 1971–1979 (2016).
pubmed: 26753751
doi: 10.1245/s10434-015-5081-3
Brandl, A., Yonemura, Y., Glehen, O., Sugarbaker, P. & Rau, B. Long term survival in patients with peritoneal metastasised gastric cancer treated with cytoreductive surgery and HIPEC: a multi-institutional cohort from PSOGI. Eur. J. Surg. Oncol. 47, 172–180 (2021).
pubmed: 33071173
doi: 10.1016/j.ejso.2020.10.006
Bonnot, P.-E. et al. Cytoreductive surgery with or without hyperthermic intraperitoneal chemotherapy for gastric cancer with peritoneal metastases (CYTO-CHIP study): a propensity score analysis. J. Clin. Oncol. 37, 2028–2040 (2019).
pubmed: 31084544
doi: 10.1200/JCO.18.01688
Bonnot, P. E. et al. Prognosis of poorly cohesive gastric cancer after complete cytoreductive surgery with or without hyperthermic intraperitoneal chemotherapy (CYTO-CHIP study). Br. J. Surg. 108, 1225–1235 (2021).
pubmed: 34498666
doi: 10.1093/bjs/znab200
Kusamura, S. et al. Multicentre study of the learning curve and surgical performance of cytoreductive surgery with intraperitoneal chemotherapy for pseudomyxoma peritonei. Br. J. Surg. 101, 1758–1765 (2014).
pubmed: 25329419
doi: 10.1002/bjs.9674
Passot, G. et al. A perioperative clinical pathway can dramatically reduce failure-to-rescue rates after cytoreductive surgery for peritoneal carcinomatosis: a retrospective study of 666 consecutive cytoreductions. Ann. Surg. 265, 806–813 (2017).
pubmed: 27775553
doi: 10.1097/SLA.0000000000001723
Noiret, B. et al. Centralization and oncologic training reduce postoperative morbidity and failure-to-rescue rates after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal surface malignancies: study on a 10-year national french practice. Ann. Surg. 272, 847–854 (2020).
pubmed: 32833761
doi: 10.1097/SLA.0000000000004326
Stang, N. L. et al. Incidence and survival of peritoneal malignant mesothelioma between 1989 and 2015: a population-based study. Cancer Epidemiol. 60, 106–111 (2019).
pubmed: 30953970
doi: 10.1016/j.canep.2019.03.014
Villeneuve, L. et al. The RENAPE observational registry: rationale and framework of the rare peritoneal tumors French patient registry. Orphanet J. Rare Dis. 12, 37–39 (2017).
pubmed: 28212684
pmcid: 5316145
doi: 10.1186/s13023-017-0571-y
Cavaliere, F. et al. Prognostic factors and oncologic outcome in 146 patients with colorectal peritoneal carcinomatosis treated with cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy: Italian multicenter study S.I.T.I.L.O. Eur. J. Surg. Oncol. 37, 148–154 (2011).
pubmed: 21093205
doi: 10.1016/j.ejso.2010.10.014
Manzanedo, I. et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) for gastric cancer with peritoneal carcinomatosis: multicenter study of Spanish Group of Peritoneal Oncologic Surgery (GECOP). Ann. Surg. Oncol. 26, 2615–2621 (2019).
pubmed: 31115852
doi: 10.1245/s10434-019-07450-4
Arjona-Sánchez, Á. et al. A minimally invasive approach for peritonectomy procedures and hyperthermic intraperitoneal chemotherapy (HIPEC) in limited peritoneal carcinomatosis: the American society of peritoneal surface malignancies (ASPSM) multi-institution analysis. Surg. Endosc. 33, 854–860 (2018).
pubmed: 30003349
doi: 10.1007/s00464-018-6352-4
Kusamura, S. et al. Learning curve, training program, and monitorization of surgical performance of peritoneal surface malignancies centers. Surg. Oncol. Clin. N. Am. 27, 507–517 (2018).
pubmed: 29935686
doi: 10.1016/j.soc.2018.02.009
Reuss, A. et al. TRUST: trial of radical upfront surgical therapy in advanced ovarian cancer (ENGOT ov33/AGO-OVAR OP7). Int. J. Gynecol. Cancer 29, 1327 (2019).
pubmed: 31420412
doi: 10.1136/ijgc-2019-000682
Mariani, A. et al. Strategies for managing intraoperative discovery of limited colorectal peritoneal metastases. Ann. Surg. Oncol. 26, 1437–1444 (2019).
pubmed: 30805806
doi: 10.1245/s10434-019-07225-x
Faron, M. et al. Linear relationship of peritoneal cancer index and survival in patients with peritoneal metastases from colorectal cancer. Ann. Surg. Oncol. 23, 114–119 (2016).
pubmed: 26014158
doi: 10.1245/s10434-015-4627-8
Goéré, D. et al. Extent of colorectal peritoneal carcinomatosis: attempt to define a threshold above which HIPEC does not offer survival benefit: a comparative study. Ann. Surg. Oncol. 22, 2958–2964 (2015).
pubmed: 25631064
doi: 10.1245/s10434-015-4387-5
van’t Sant, I. et al. Diagnostic performance of imaging for the detection of peritoneal metastases: a meta-analysis. Eur. Radiol. 30, 3101–3112 (2020).
doi: 10.1007/s00330-019-06524-x
Mohkam, K. et al. Resectability of peritoneal carcinomatosis: learnings from a prospective cohort of 533 consecutive patients selected for cytoreductive surgery. Ann. Surg. Oncol. 23, 1261–1270 (2016).
pubmed: 26628435
doi: 10.1245/s10434-015-5005-2
Sugarbaker, P. H. & Low, R. N. (eds) Pictorial Essays On Peritoneal Metastases Imaging: CT, MRI and PET-CT (Nova Science Publishers, 2020).
Low, R. N., Barone, R. M. & Rousset, P. Peritoneal MRI in patients undergoing cytoreductive surgery and HIPEC: history, clinical applications, and implementation. Eur. J. Surg. Oncol. 47, 65–74 (2021).
pubmed: 30852063
doi: 10.1016/j.ejso.2019.02.030
Dohan, A. et al. Evaluation of the peritoneal carcinomatosis index with CT and MRI. Br. J. Surg. 104, 1244–1249 (2017).
pubmed: 28376270
doi: 10.1002/bjs.10527
Sant, I. V. T. et al. Diffusion-weighted MRI assessment of the peritoneal cancer index before cytoreductive surgery. Br. J. Surg. 106, 491–498 (2019).
doi: 10.1002/bjs.10989
Delhorme, J.-B. et al. Appendiceal tumors and pseudomyxoma peritonei: French Intergroup Clinical Practice Guidelines for diagnosis, treatments and follow-up (RENAPE, RENAPATH, SNFGE, FFCD, GERCOR, UNICANCER, SFCD, SFED, SFRO, ACHBT, SFR). Dig. Liver Dis. 54, 30–39 (2022).
pubmed: 34815194
doi: 10.1016/j.dld.2021.10.005
Menassel, B. et al. Preoperative CT and MRI prediction of non-resectability in patients treated for pseudomyxoma peritonei from mucinous appendiceal neoplasms. Eur. J. Surg. Oncol. 42, 558–566 (2016).
pubmed: 26856956
doi: 10.1016/j.ejso.2016.01.005
Lehmann, K. et al.
pubmed: 27692533
doi: 10.1016/j.ejso.2016.08.020
Kim, S.-J. & Lee, S.-W. Diagnostic accuracy of
pubmed: 29099613
doi: 10.1259/bjr.20170519
Sugarbaker, P. H. et al. Concerning CT features used to select patients for treatment of peritoneal metastases, a pictoral essay. Int. J. Hyperthermia 33, 497–504 (2017).
pubmed: 28540832
doi: 10.1080/02656736.2017.1317368
Chandramohan, A. et al. Communicating imaging findings in peritoneal mesothelioma: the impact of ‘PAUSE’ on surgical decision-making. Insights Imaging 12, 174 (2021).
pubmed: 34817720
pmcid: 8613330
doi: 10.1186/s13244-021-01118-y
Chandramohan, A., Thrower, A., Smith, S. A., Shah, N. & Moran, B. “PAUSE”: a method for communicating radiological extent of peritoneal malignancy. Clin. Radiol. 72, 972–980 (2017).
pubmed: 28778454
doi: 10.1016/j.crad.2017.07.005
Lennartz, S. et al. Iodine overlays to improve differentiation between peritoneal carcinomatosis and benign peritoneal lesions. Eur. Radiol. 30, 3968–3976 (2020).
pubmed: 32125516
doi: 10.1007/s00330-020-06729-5
Darras, K. E. et al. Virtual monoenergetic reconstruction of contrast-enhanced CT scans of the abdomen and pelvis at 40 keV improves the detection of peritoneal metastatic deposits. Abdom. Radiol. 44, 422–428 (2019).
doi: 10.1007/s00261-018-1733-7
Thivolet, A. et al. Spectral photon-counting CT imaging of colorectal peritoneal metastases: initial experience in rats. Sci. Rep. 10, 13394 (2020).
pubmed: 32770125
pmcid: 7414131
doi: 10.1038/s41598-020-70282-w
Zhao, L. et al. Role of [68Ga]Ga-DOTA-FAPI-04 PET/CT in the evaluation of peritoneal carcinomatosis and comparison with [
doi: 10.1007/s00259-020-05146-6
Kuten, J. et al. Head-to-head comparison of [
pubmed: 34302504
doi: 10.1007/s00259-021-05494-x
van’t Sant, I. et al. Seeing the whole picture: added value of MRI for extraperitoneal findings in CRS-HIPEC candidates. Eur. J. Surg. Oncol. 48, 462–469 (2022).
doi: 10.1016/j.ejso.2021.09.014
Wang, W. et al. Are positron emission tomography-computed tomography (PET-CT) scans useful in preoperative assessment of patients with peritoneal disease before cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC)? Int. J. Hyperthermia 34, 524–531 (2018).
pubmed: 28854825
doi: 10.1080/02656736.2017.1366554
Vuysere, S. D. et al. Accuracy of whole-body diffusion-weighted MRI (WB-DWI/MRI) in diagnosis, staging and follow-up of gastric cancer, in comparison to CT: a pilot study. BMC Med. Imaging 21, 18 (2021).
pubmed: 33546626
pmcid: 7866710
doi: 10.1186/s12880-021-00550-2
Dresen, R. C. et al. Whole-body diffusion-weighted MRI for operability assessment in patients with colorectal cancer and peritoneal metastases. Cancer Imaging 19, 1 (2019).
pubmed: 30616608
pmcid: 6322317
doi: 10.1186/s40644-018-0187-z
Brendle, C. et al. Assessment of metastatic colorectal cancer with hybrid imaging: comparison of reading performance using different combinations of anatomical and functional imaging techniques in PET/MRI and PET/CT in a short case series. Eur. J. Nucl. Med. Mol. I 43, 123–132 (2016).
doi: 10.1007/s00259-015-3137-z
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).
pubmed: 19097774
doi: 10.1016/j.ejca.2008.10.026
Bhatt, A. et al. Patterns of peritoneal dissemination and response to systemic chemotherapy in common and rare peritoneal tumours treated by cytoreductive surgery: study protocol of a prospective, multicentre, observational study. BMJ Open 11, e046819 (2021).
pubmed: 34226220
pmcid: 8258594
doi: 10.1136/bmjopen-2020-046819
Bhatt, A. et al. Clinical and radiologic predictors of a pathologic complete response to neoadjuvant chemotherapy (NACT) in patients undergoing cytoreductive surgery for colorectal peritoneal metastases: results of a prospective multi-center study. Ann. Surg. Oncol. 28, 3840–3849 (2021).
pubmed: 33210270
doi: 10.1245/s10434-020-09330-8
Liberale, G. et al. Accuracy of FDG-PET/CT in colorectal peritoneal carcinomatosis: potential tool for evaluation of chemotherapeutic response. Anticancer Res. 37, 929–934 (2017).
pubmed: 28179354
doi: 10.21873/anticanres.11401
Park, S. J. et al. Reduction of cycles of neoadjuvant chemotherapy for advanced epithelial ovarian, fallopian or primary peritoneal cancer (ROCOCO): study protocol for a phase III randomized controlled trial. BMC Cancer 20, 385 (2020).
pubmed: 32375688
pmcid: 7201947
doi: 10.1186/s12885-020-06886-2
Sala, E. et al. Advanced ovarian cancer: multiparametric MR imaging demonstrates response- and metastasis-specific effects. Radiology 263, 149–159 (2012).
pubmed: 22332064
doi: 10.1148/radiol.11110175
Himoto, Y. et al. Computed tomography–derived radiomic metrics can identify responders to immunotherapy in ovarian cancer. JCO Precis. Oncol. 3, 1–13 (2019).
Nougaret, S. et al. Radiomics and radiogenomics in ovarian cancer: a literature review. Abdom. Radiol. 46, 2308–2322 (2021).
doi: 10.1007/s00261-020-02820-z
Mikkelsen, M. S. et al. Assessment of peritoneal metastases with DW-MRI, CT, and FDG PET/CT before cytoreductive surgery for advanced stage epithelial ovarian cancer. Eur. J. Surg. Oncol. 47, 2134–2141 (2021).
pubmed: 33812768
doi: 10.1016/j.ejso.2021.03.239
Engbersen, M. P. et al. Dedicated MRI staging versus surgical staging of peritoneal metastases in colorectal cancer patients considered for CRS-HIPEC; the DISCO randomized multicenter trial. BMC Cancer 21, 464 (2021).
pubmed: 33902498
pmcid: 8077799
doi: 10.1186/s12885-021-08168-x
Passot, G. et al. Multicentre study of laparoscopic or open assessment of the peritoneal cancer index (BIG-RENAPE). Br. J. Surg. 105, 663–667 (2018).
pubmed: 29579322
doi: 10.1002/bjs.10723
Iversen, L. H., Rasmussen, P. C. & Laurberg, S. Value of laparoscopy before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal carcinomatosis. Br. J. Surg. 100, 285–292 (2013).
pubmed: 23124619
doi: 10.1002/bjs.8908
Sell, N. M. et al. Staging laparoscopy not only saves patients an incision, but may also help them live longer. Ann. Surg. Oncol. 25, 1009–1016 (2018).
pubmed: 29388123
doi: 10.1245/s10434-017-6317-1
Allen, C. J. et al. Yield of peritoneal cytology in staging patients with gastric and gastroesophageal cancer. J. Surg. Oncol. 120, 1350–1357 (2019).
pubmed: 31612494
doi: 10.1002/jso.25729
Blackshaw, G. R. J. C. et al. Laparoscopy significantly improves the perceived preoperative stage of gastric cancer. Gastric Cancer 6, 225–229 (2003).
pubmed: 14716516
doi: 10.1007/s10120-003-0257-0
Sarela, A. I., Lefkowitz, R., Brennan, M. F. & Karpeh, M. S. Selection of patients with gastric adenocarcinoma for laparoscopic staging. Am. J. Surg. 191, 134–138 (2006).
pubmed: 16399124
doi: 10.1016/j.amjsurg.2005.10.015
Passot, G. et al. Postoperative outcomes of laparoscopic vs open cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy for treatment of peritoneal surface malignancies. Eur. J. Surg. Oncol. 40, 957–962 (2014).
pubmed: 24209429
doi: 10.1016/j.ejso.2013.10.002
Dong, D. et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer. Ann. Oncol. 30, 431–438 (2019).
pubmed: 30689702
pmcid: 6442651
doi: 10.1093/annonc/mdz001
Jiang, Y. et al. Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study. Lancet Digital Heal. 4, e340–e350 (2022).
doi: 10.1016/S2589-7500(22)00040-1
Passot, G. et al. Pathological response to neoadjuvant chemotherapy: a new prognosis tool for the curative management of peritoneal colorectal carcinomatosis. Ann. Surg. Oncol. 21, 2608–2614 (2014).
pubmed: 24668148
doi: 10.1245/s10434-014-3647-0
Goere, D. et al. Second-look surgery plus hyperthermic intraperitoneal chemotherapy versus surveillance in patients at high risk of developing colorectal peritoneal metastases (PROPHYLOCHIP-PRODIGE 15): a randomised, phase 3 study. Lancet Oncol. 21, 1147–1154 (2020).
pubmed: 32717180
doi: 10.1016/S1470-2045(20)30322-3
Bhatt, A. et al. Prospective correlation of the radiological, surgical and pathological findings in patients undergoing cytoreductive surgery for colorectal peritoneal metastases: implications for the preoperative estimation of the peritoneal cancer index. Colorectal Dis. 22, 2123–2132 (2020).
pubmed: 32940414
doi: 10.1111/codi.15368
Bhatt, A. & Glehen, O. Extent of peritoneal resection for peritoneal metastases: looking beyond a complete cytoreduction. Ann. Surg. Oncol. 27, 1458–1470 (2020).
pubmed: 31965374
doi: 10.1245/s10434-020-08208-z
Veys, I. et al. ICG-fluorescence imaging for detection of peritoneal metastases and residual tumoral scars in locally advanced ovarian cancer: a pilot study. J. Surg. Oncol. 117, 228–235 (2018).
pubmed: 28787759
doi: 10.1002/jso.24807
Zapardiel, I. et al. Utility of intraoperative fluorescence imaging in gynecologic surgery: systematic review and consensus statement. Ann. Surg. Oncol. 28, 3266–3278 (2021).
pubmed: 33095359
doi: 10.1245/s10434-020-09222-x
Bhatt, A. & Glehen, O. ASO author reflections: tailoring the extent of peritoneal resection for peritoneal metastases according to the primary tumor site. Ann. Surg. Oncol. 27, 1471–1472 (2020).
pubmed: 32162077
doi: 10.1245/s10434-020-08344-6
Baratti, D., Kusamura, S., Cabras, A. D. & Deraco, M. Cytoreductive surgery with selective versus complete parietal peritonectomy followed by hyperthermic intraperitoneal chemotherapy in patients with diffuse malignant peritoneal mesothelioma: a controlled study. Ann. Surg. Oncol. 19, 1416–1424 (2012).
pubmed: 22302266
doi: 10.1245/s10434-012-2237-2
Bhatt, A. et al. Total parietal peritonectomy can be performed with acceptable morbidity for patients with advanced ovarian cancer after neoadjuvant chemotherapy: results from a prospective multi-centric study. Ann. Surg. Oncol. 28, 1118–1129 (2021).
pubmed: 32748154
doi: 10.1245/s10434-020-08918-4
Sinukumar, S. et al. A comparison of outcomes following total and selective peritonectomy performed at the time of interval cytoreductive surgery for advanced serous epithelial ovarian, fallopian tube and primary peritoneal cancer–a study by INDEPSO. Eur. J. Surg. Oncol. 47, 75–81 (2021).
pubmed: 30857879
doi: 10.1016/j.ejso.2019.02.031
Lawrence, V. A. et al. Functional independence after major abdominal surgery in the elderly. J. Am. Coll. Surg. 199, 762–772 (2004).
pubmed: 15501119
doi: 10.1016/j.jamcollsurg.2004.05.280
Christensen, T. & Kehlet, H. Postoperative fatigue. World J. Surg. 17, 220–225 (1993).
pubmed: 8511917
doi: 10.1007/BF01658930
Baratti, D. et al. Postoperative complications after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy affect long-term outcome of patients with peritoneal metastases from colorectal cancer: a two-center study of 101 patients. Dis. Colon Rectum 57, 858–868 (2014).
pubmed: 24901687
doi: 10.1097/DCR.0000000000000149
Ditmyer, M. M., Topp, R. & Pifer, M. Prehabilitation in preparation for orthopaedic surgery. Orthop. Nurs. 21, 43–54 (2002).
pubmed: 12432699
doi: 10.1097/00006416-200209000-00008
Hübner, M. et al. Guidelines for perioperative care in cytoreductive surgery (CRS) with or without hyperthermic IntraPEritoneal chemotherapy (HIPEC): enhanced recovery after surgery (ERAS®) Society Recommendations — Part I: preoperative and intraoperative management. Eur. J. Surg. Oncol. 46, 2292–2310 (2020).
pubmed: 32873454
doi: 10.1016/j.ejso.2020.07.041
Hübner, M. et al. Guidelines for perioperative care in cytoreductive surgery (CRS) with or without hyperthermic IntraPEritoneal chemotherapy (HIPEC): enhanced recovery after surgery (ERAS®) society recommendations–Part II: postoperative management and special considerations. Eur. J. Surg. Oncol. 46, 2311–2323 (2020).
pubmed: 32826114
doi: 10.1016/j.ejso.2020.08.006
Dhiman, A. et al. Guide to enhanced recovery for cancer patients undergoing surgery: ERAS for patients undergoing cytoreductive surgery with or without HIPEC. Ann. Surg. Oncol. 28, 6955–6964 (2021).
pubmed: 33954868
doi: 10.1245/s10434-021-09973-1
Vashi, P. G. et al. The relationship between baseline nutritional status with subsequent parenteral nutrition and clinical outcomes in cancer patients undergoing hyperthermic intraperitoneal chemotherapy. Nutr. J. 12, 118–118 (2013).
pubmed: 23941331
pmcid: 3751179
doi: 10.1186/1475-2891-12-118
Mills, E. et al. Smoking cessation reduces postoperative complications: a systematic review and meta-analysis. Am. J. Med. 124, 144–154.e8 (2011).
pubmed: 21295194
doi: 10.1016/j.amjmed.2010.09.013
Thomsen, T., Villebro, N. & Møller, A. M. Interventions for preoperative smoking cessation. Cochrane Database Syst. Rev. 3, CD002294 (2014).
Iqbal, U. et al. Preoperative patient preparation in enhanced recovery pathways. J. Anaesthesiol. Clin. Pharmacol. 35, S14–S23 (2019).
pubmed: 31142954
pmcid: 6515717
doi: 10.4103/joacp.JOACP_54_18
Pouwels, S. et al. Preoperative exercise therapy for elective major abdominal surgery: a systematic review. Int. J. Surg. 12, 134–140 (2014).
pubmed: 24325942
doi: 10.1016/j.ijsu.2013.11.018
Boukili, I. E. et al. Prehabilitation before major abdominal surgery: evaluation of the impact of a perioperative clinical pathway, a pilot study. Scand. J. Surg. 111, 145749692210833 (2022).
doi: 10.1177/14574969221083394
Alyami, M. et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal carcinomatosis in the elderly: a case-controlled, multicenter study. Ann. Surg. Oncol. 23, 737–745 (2016).
pubmed: 27600619
doi: 10.1245/s10434-016-5519-2
Dion, L. et al. Ovarian cancer in the elderly: time to move towards a more logical approach to improve prognosis — a study from the FRANCOGYN Group. J. Clin. Med. 9, 1339 (2020).
pmcid: 7291201
doi: 10.3390/jcm9051339
Gagniere, J. et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for the elderly: is it reasonable? a meta-analysis. Ann. Surg. Oncol. 25, 709–719 (2018).
pubmed: 29282602
doi: 10.1245/s10434-017-6313-5
Rubenstein, L. Z., Stuck, A. E., Siu, A. L. & Wieland, D. Impacts of geriatric evaluation and management programs on defined outcomes: overview of the evidence. J. Am. Geriatr. Soc. 39, 8S–16S (1991).
pubmed: 1832179
doi: 10.1111/j.1532-5415.1991.tb05927.x
Soubeyran, P. et al. Screening for vulnerability in older cancer patients: the ONCODAGE prospective multicenter cohort study. PLoS ONE 9, e115060 (2014).
pubmed: 25503576
pmcid: 4263738
doi: 10.1371/journal.pone.0115060
Hamaker, M. E. et al. Frailty screening methods for predicting outcome of a comprehensive geriatric assessment in elderly patients with cancer: a systematic review. Lancet Oncol. 13, e437–e444 (2012).
pubmed: 23026829
doi: 10.1016/S1470-2045(12)70259-0
Wildiers, H. et al. International society of geriatric oncology consensus on geriatric assessment in older patients with cancer. J. Clin. Oncol. 32, 2595–2603 (2014).
pubmed: 25071125
pmcid: 4876338
doi: 10.1200/JCO.2013.54.8347
Mohanty, S. et al. Optimal perioperative management of the geriatric patient: a best practices guideline from the american college of surgeons NSQIP and the American Geriatrics Society. J. Am. Coll. Surg. 222, 930–947 (2016).
pubmed: 27049783
doi: 10.1016/j.jamcollsurg.2015.12.026
Minnella, E. M. et al. Patients with poor baseline walking capacity are most likely to improve their functional status with multimodal prehabilitation. Surgery 160, 1070–1079 (2016).
pubmed: 27476586
doi: 10.1016/j.surg.2016.05.036
Roche, M. et al. Feasibility of a prehabilitation programme dedicated to older patients with cancer before complex medical–surgical procedures: the PROADAPT pilot study protocol. BMJ Open 11, e042960 (2021).
pubmed: 33811052
pmcid: 8023742
doi: 10.1136/bmjopen-2020-042960
Falandry, C. et al. Interventions to improve physical performances of older people with cancer before complex medico-surgical procedures. Medicine 99, e21780 (2020).
pubmed: 32991400
pmcid: 7523808
doi: 10.1097/MD.0000000000021780
Cederholm, T. et al. GLIM criteria for the diagnosis of malnutrition – a consensus report from the global clinical nutrition community. Clin. Nutr. 38, 1–9 (2019).
pubmed: 30181091
doi: 10.1016/j.clnu.2018.08.002
Boereboom, C., Doleman, B., Lund, J. N. & Williams, J. P. Systematic review of pre-operative exercise in colorectal cancer patients. Tech. Coloproctol. 20, 81–89 (2016).
pubmed: 26614304
doi: 10.1007/s10151-015-1407-1
Launay-Savary, M.-V. et al. Are enhanced recovery programs in colorectal surgery feasible and useful in the elderly? A systematic review of the literature. J. Visc. Surg. 154, 29–35 (2017).
pubmed: 27842907
doi: 10.1016/j.jviscsurg.2016.09.016
Dedrick, R. L. Theoretical and experimental bases of intraperitoneal chemotherapy. Semin. Oncol. 12 (3 Suppl. 4), 1–6 (1985).
pubmed: 4048968
Dedrick, R. L., Myers, C. E., Bungay, P. M. & DeVita, V. T. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat. Rep. 62, 1–11 (1978).
pubmed: 626987
Ceelen, W. P. & Flessner, M. F. Intraperitoneal therapy for peritoneal tumors: biophysics and clinical evidence. Nat. Rev. Clin. Oncol. 7, 108–115 (2010).
pubmed: 20010898
doi: 10.1038/nrclinonc.2009.217
Nagy, J. A., Chang, S.-H., Shih, S.-C., Dvorak, A. M. & Dvorak, H. F. Heterogeneity of the tumor vasculature. Semin. Thromb. Hemost. 36, 321–331 (2010).
pubmed: 20490982
pmcid: 3278036
doi: 10.1055/s-0030-1253454
Heldin, C.-H., Rubin, K., Pietras, K. & Östman, A. High interstitial fluid pressure – an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).
pubmed: 15510161
doi: 10.1038/nrc1456
Spratt, J. S., Adcock, R. A., Muskovin, M., Sherrill, W. & McKeown, J. Clinical delivery system for intraperitoneal hyperthermic chemotherapy. Cancer Res. 40, 256–260 (1980).
pubmed: 6766084
Issels, R. D. Hyperthermia adds to chemotherapy. Eur. J. Cancer 44, 2546–2554 (2008).
pubmed: 18789678
doi: 10.1016/j.ejca.2008.07.038
Reymond, M. A. et al. Feasibility of therapeutic pneumoperitoneum in a large animal model using a microvaporisator. Surg. Endosc. 14, 51–55 (2000).
pubmed: 10653236
doi: 10.1007/s004649900010
Reis, A. C. V. et al. Hemodynamic and respiratory implications of high intra-abdominal pressure during HIPEC. Eur. J. surg. Oncol. 46, 1896–1901 (2020).
pubmed: 32147425
doi: 10.1016/j.ejso.2020.02.006
Sugarbaker, P. H. & Jablonski, K. A. Prognostic features of 51 colorectal and 130 appendiceal cancer patients with peritoneal carcinomatosis treated by cytoreductive surgery and intraperitoneal chemotherapy. Ann. Surg. 221, 124–132 (1995).
pubmed: 7857141
pmcid: 1234945
doi: 10.1097/00000658-199502000-00002
der Speeten, K. V. & Lemoine, L. In Management of Peritoneal Metastases: Cytoreductive Surgery, HIPEC and Beyond (ed. Bhatt A.) 79–102 (Springer, 2017).
Urano, M., Kuroda, M. & Nishimura, Y. For the clinical application of thermochemotherapy given at mild temperatures. Int. J. Hyperthermia 15, 79–107 (1999).
pubmed: 10323618
doi: 10.1080/026567399285765
Leunig, M. et al. Interstitial fluid pressure in solid tumors following hyperthermia: possible correlation with therapeutic response. Cancer Res. 52, 487–490 (1992).
pubmed: 1728421
Hettinga, J. et al. Mechanism of hyperthermic potentiation of cisplatin action in cisplatin-sensitive and -resistant tumour cells. Br. J. Cancer 75, 1735–1743 (1997).
pubmed: 9192975
pmcid: 2223603
doi: 10.1038/bjc.1997.297
Hettinga, J. V., Konings, A. W. & Kampinga, H. H. Reduction of cellular cisplatin resistance by hyperthermia-a review. Int. J. Hyperthermia 13, 439–457 (1997).
pubmed: 9354931
doi: 10.3109/02656739709023545
Wallner, K. E. & Li, G. C. Effect of drug exposure duration and sequencing on hyperthermic potentiation of mitomycin-C and cisplatin. Cancer Res. 47, 493–495 (1987).
pubmed: 3098412
Yurttas, C. et al. Systematic review of variations in hyperthermic intraperitoneal chemotherapy (HIPEC) for peritoneal metastasis from colorectal cancer. J. Clin. Med. 7, 567 (2018).
pmcid: 6306814
doi: 10.3390/jcm7120567
Bhatt, A. et al. HIPEC methodology and regimens: the need for an expert consensus. Ann. Surg. Oncol. 28, 9098–9113 (2021).
pubmed: 34142293
doi: 10.1245/s10434-021-10193-w
Driel, W. Jvan et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N. Engl. J. Med. 378, 230–240 (2018).
pubmed: 29342393
doi: 10.1056/NEJMoa1708618
Yang, X.-J. et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of a phase iii randomized clinical trial. Ann. Surg. Oncol. 18, 1575–1581 (2011).
pubmed: 21431408
pmcid: 3087875
doi: 10.1245/s10434-011-1631-5
Park, E. J. et al. Pharmacologic properties of the carrier solutions for hyperthermic intraperitoneal chemotherapy: comparative analyses between water and lipid carrier solutions in the rat model. Ann. Surg. Oncol. 25, 3185–3192 (2018).
pubmed: 30027459
pmcid: 6132421
doi: 10.1245/s10434-018-6628-x
Piché, N. et al. Rationale for heating oxaliplatin for the intraperitoneal treatment of peritoneal carcinomatosis: a study of the effect of heat on intraperitoneal oxaliplatin using a murine model. Ann. Surg. 254, 138–144 (2011).
pubmed: 21494122
doi: 10.1097/SLA.0b013e3182193143
Bespalov, V. G. et al. Comparative efficacy evaluation of catheter intraperitoneal chemotherapy, normothermic and hyperthermic chemoperfusion in a rat model of ascitic ovarian cancer. Int. J. Hyperthermia 34, 545–550 (2017).
pubmed: 28893108
doi: 10.1080/02656736.2017.1375161
Raue, W. et al. Multimodal approach for treatment of peritoneal surface malignancies in a tumour-bearing rat model. Int. J. Colorectal Dis. 25, 245–250 (2010).
pubmed: 19902227
doi: 10.1007/s00384-009-0819-7
Ortega-Deballon, P. et al. Which method to deliver hyperthermic intraperitoneal chemotherapy with oxaliplatin? An experimental comparison of open and closed techniques. Ann. Surg. Oncol. 17, 1957–1963 (2010).
pubmed: 20143265
doi: 10.1245/s10434-010-0937-z
Helderman, R. F. C. P. A. et al. Preclinical in vivo-models to investigate HIPEC; current methodologies and challenges. Cancers 13, 3430 (2021).
pubmed: 34298644
pmcid: 8303745
doi: 10.3390/cancers13143430
Lemoine, L. et al. Body surface area-based versus concentration-based intraperitoneal perioperative chemotherapy in a rat model of colorectal peritoneal surface malignancy: pharmacologic guidance towards standardization. Oncotarget 10, 1407–1424 (2019).
pubmed: 30858926
pmcid: 6402719
doi: 10.18632/oncotarget.26667
Löffler, M. W. et al. Pharmacodynamics of oxaliplatin-derived platinum compounds during hyperthermic intraperitoneal chemotherapy (HIPEC): an emerging aspect supporting the rational design of treatment protocols. Ann. Surg. Oncol. 24, 1650–1657 (2017).
pubmed: 28160138
doi: 10.1245/s10434-017-5790-x
Elekonawo, F. M. K. et al. Effect of intraperitoneal chemotherapy concentration on morbidity and survival. BJS Open 4, 293–300 (2020).
pubmed: 31950702
pmcid: 7093784
doi: 10.1002/bjs5.50250
Löke, D. R. et al. Simulating drug penetration during hyperthermic intraperitoneal chemotherapy. Drug Deliv. 28, 145–161 (2021).
pubmed: 33427507
pmcid: 7808385
doi: 10.1080/10717544.2020.1862364
Prabhu, A. et al. Effect of oxaliplatin-based chemotherapy on chemosensitivity in patients with peritoneal metastasis from colorectal cancer treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: proof-of-concept study. BJS Open 5, zraa075 (2021).
pubmed: 33839755
pmcid: 8038512
doi: 10.1093/bjsopen/zraa075
Hübner, M. et al. Pressurized IntraPeritoneal aerosol chemotherapy - practical aspects. Eur. J. Surg. Oncol. 43, 1102–1109 (2017).
pubmed: 28431896
doi: 10.1016/j.ejso.2017.03.019
Alyami, M. et al. Pressurised intraperitoneal aerosol chemotherapy: rationale, evidence, and potential indications. Lancet Oncol. 20, e368–e377 (2019).
pubmed: 31267971
doi: 10.1016/S1470-2045(19)30318-3
Davigo, A. et al. PIPAC versus HIPEC: cisplatin spatial distribution and diffusion in a swine model. Int. J. Hyperthermia 37, 144–150 (2020).
pubmed: 32003300
doi: 10.1080/02656736.2019.1704891
Solass, W. et al. Reproducibility of the peritoneal regression grading score for assessment of response to therapy in peritoneal metastasis. Histopathology 74, 1014–1024 (2019).
pubmed: 30687944
doi: 10.1111/his.13829
Solaß, W., Hetzel, A., Nadiradze, G., Sagynaliev, E. and Reymond, M.A. Description of a novel approach for intraperitoneal drug delivery and the related device. Surg. Endosc. 26, 1849–1855 (2012).
pubmed: 22580869
doi: 10.1007/s00464-012-2148-0
Kurtz, F. et al. Feasibility, safety, and efficacy of pressurized intraperitoneal aerosol chemotherapy (PIPAC) for peritoneal metastasis: a registry study. Gastroent Res. Pract. 2018, 2743985 (2018).
doi: 10.1155/2018/2743985
Rovers, K. P. et al. Pressurized intraperitoneal aerosol chemotherapy (oxaliplatin) for unresectable colorectal peritoneal metastases: a multicenter, single-arm, phase II trial (CRC-PIPAC). Ann. Surg. Oncol. 28, 5311–5326 (2021).
pubmed: 33544279
doi: 10.1245/s10434-020-09558-4
Tempfer, C. B. et al. A phase I, single-arm, open-label, dose escalation study of intraperitoneal cisplatin and doxorubicin in patients with recurrent ovarian cancer and peritoneal carcinomatosis. Gynecol. Oncol. 150, 23–30 (2018).
pubmed: 29743140
doi: 10.1016/j.ygyno.2018.05.001
Kepenekian, V. et al. Non-resectable malignant peritoneal mesothelioma treated with pressurized intraperitoneal aerosol chemotherapy (PIPAC) plus systemic chemotherapy could lead to secondary complete cytoreductive surgery: a cohort study. Ann. Surg. Oncol. 29, 2104–2113 (2022).
pubmed: 34713369
doi: 10.1245/s10434-021-10983-2
Ellebaek, S. B. et al. Pressurized intraperitoneal aerosol chemotherapy (PIPAC)-directed treatment of peritoneal metastasis in end-stage colo-rectal cancer patients. Pleura Peritoneum 5, 20200109 (2020).
pubmed: 32566727
pmcid: 7292236
doi: 10.1515/pp-2020-0109
Alyami, M. et al. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) for unresectable peritoneal metastasis from gastric cancer. Eur. J. Surg. Oncol. 47, 123–127 (2020).
pubmed: 32561204
doi: 10.1016/j.ejso.2020.05.021
Ndaw, S. et al. Occupational exposure to platinum drugs during intraperitoneal chemotherapy. Biomonitoring and surface contamination. Toxicol. Lett. 298, 171–176 (2018).
pubmed: 29852276
doi: 10.1016/j.toxlet.2018.05.031
Clerc, D. et al. Current practice and perceptions of safety protocols for the use of intraperitoneal chemotherapy in the operating room: results of the IP-OR international survey. Pleura Peritoneum 6, 39–45 (2021).
pubmed: 34222648
pmcid: 8223803
doi: 10.1515/pp-2020-0148
Tempfer, C., Giger-Pabst, U., Hilal, Z., Dogan, A. & Rezniczek, G. A. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) for peritoneal carcinomatosis: systematic review of clinical and experimental evidence with special emphasis on ovarian cancer. Arch. Gynecol. Obstet. 298, 243–257 (2018).
pubmed: 29869089
doi: 10.1007/s00404-018-4784-7
Hübner, M. et al. Consensus guidelines for pressurized intraperitoneal aerosol chemotherapy: technical aspects and treatment protocols. Eur. J. Surg. Oncol. 48, 789–794 (2022).
pubmed: 34785087
doi: 10.1016/j.ejso.2021.10.028
Dumont, F. et al. A phase I dose-escalation study of oxaliplatin delivered via a laparoscopic approach using pressurised intraperitoneal aerosol chemotherapy for advanced peritoneal metastases of gastrointestinal tract cancers. Eur. J. Cancer 140, 37–44 (2020).
pubmed: 33039812
doi: 10.1016/j.ejca.2020.09.010
Taibi, A. et al. Feasibility and safety of oxaliplatin-based pressurized intraperitoneal aerosol chemotherapy with or without intraoperative intravenous 5-fluorouracil and leucovorin for colorectal peritoneal metastases: a multicenter comparative cohort study. Ann. Surg. Oncol. 29, 5243–5251 (2022).
pubmed: 35318519
doi: 10.1245/s10434-022-11577-2
Sande, L. V. D. et al. Intraperitoneal aerosolization of albumin-stabilized paclitaxel nanoparticles (Abraxane
Sgarbura, O. et al. MESOTIP: phase II multicenter randomized trial evaluating the association of PIPAC and systemic chemotherapy vs. systemic chemotherapy alone as 1st-line treatment of malignant peritoneal mesothelioma. Pleura Peritoneum 4, 20190010 (2019).
pubmed: 31417958
pmcid: 6693480
doi: 10.1515/pp-2019-0010
Eveno, C., Jouvin, I. & Pocard, M. PIPAC EstoK 01: pressurized intraperitoneal aerosol chemotherapy with cisplatin and doxorubicin (PIPAC C/D) in gastric peritoneal metastasis: a randomized and multicenter phase II study. Pleura Peritoneum 3, 20180116 (2018).
pubmed: 30911659
pmcid: 6405009
doi: 10.1515/pp-2018-0116
Alyami, M. et al. Unresectable peritoneal metastasis treated by pressurized intraperitoneal aerosol chemotherapy (PIPAC) leading to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Eur. J. Surg. Oncol. 47, 128–133 (2021).
pubmed: 31253545
doi: 10.1016/j.ejso.2019.06.028
Tate, S. J., Sande, L. V., de, Ceelen, W. P., Torkington, J. & Parker, A. L. The feasibility of pressurised intraperitoneal aerosolised virotherapy (PIPAV) to administer oncolytic adenoviruses. Pharm 13, 2043 (2021).
Sugarbaker, P. H., Stuart, O. A., Vidal-Jove, J., Pessagno, A. M. & DeBruijn, E. A. Peritoneal Carcinomatosis: Principles Of Management (Springer, 1996).
Flessner, M. F. The transport barrier in intraperitoneal therapy. Am. J. Physiol. Ren. Physiol. 288, F433–F342 (2005).
doi: 10.1152/ajprenal.00313.2004
Wilson, R. B. Hypoxia, cytokines and stromal recruitment: parallels between pathophysiology of encapsulating peritoneal sclerosis, endometriosis and peritoneal metastasis. Pleura Peritoneum 3, 20180103 (2018).
pubmed: 30911653
pmcid: 6405013
doi: 10.1515/pp-2018-0103
Seebauer, C. T. et al. Peritoneal carcinomatosis of colorectal cancer is characterized by structural and functional reorganization of the tumor microenvironment inducing senescence and proliferation arrest in cancer cells. Oncoimmunology 5, e1242543 (2016).
pubmed: 28439450
pmcid: 5391678
doi: 10.1080/2162402X.2016.1242543
Wang, E. et al. Abundant intratumoral fibrosis prevents lymphocyte infiltration into peritoneal metastases of colorectal cancer. PLoS ONE 16, e0255049 (2021).
pubmed: 34293030
pmcid: 8297902
doi: 10.1371/journal.pone.0255049
Morgan, R. D. et al. Objective responses to first-line neoadjuvant carboplatin–paclitaxel regimens for ovarian, fallopian tube, or primary peritoneal carcinoma (ICON8): post-hoc exploratory analysis of a randomised, phase 3 trial. Lancet Oncol. 22, 277–288 (2021).
pubmed: 33357510
doi: 10.1016/S1470-2045(20)30591-X
Ray-Coquard, I. et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N. Engl. J. Med. 381, 2416–2428 (2019).
pubmed: 31851799
doi: 10.1056/NEJMoa1911361
Coleman, R. L. et al. Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer. N. Engl. J. Med. 381, 2403–2415 (2019).
pubmed: 31562800
pmcid: 6941439
doi: 10.1056/NEJMoa1909707
Ledermann, J. A. et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24, vi24–vi32 (2013).
pubmed: 24078660
doi: 10.1093/annonc/mdt333
Winter-Roach, B. A., Kitchener, H. C. & Dickinson, H. O. Adjuvant (post-surgery) chemotherapy for early stage epithelial ovarian cancer. Cochrane Database Syst. Rev. 1, CD004706 (2009).
ICON1. International collaborative ovarian neoplasm trial 1: a randomized trial of adjuvant chemotherapy in women with early-stage ovarian cancer. J. Natl Cancer Inst. 95, 125–132 (2003).
doi: 10.1093/jnci/95.2.125
McGuire, W. P. et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N. Engl. J. Med. 334, 1–6 (1996).
pubmed: 7494563
doi: 10.1056/NEJM199601043340101
Piccart, M. J. et al. Randomized intergroup trial of cisplatin-paclitaxel versus cisplatin-cyclophosphamide in women with advanced epithelial ovarian cancer: three-year results. J. Natl Cancer Inst. 92, 699–708 (2000).
pubmed: 10793106
doi: 10.1093/jnci/92.9.699
Aghajanian, C. et al. OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J. Clin. Oncol. 30, 2039–2045 (2012).
pubmed: 22529265
pmcid: 3646321
doi: 10.1200/JCO.2012.42.0505
Pujade-Lauraine, E. et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J. Clin. Oncol. 32, 1302–1308 (2014).
pubmed: 24637997
doi: 10.1200/JCO.2013.51.4489
Perren, T. J. et al. A phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med. 365, 2484–2496 (2011).
pubmed: 22204725
doi: 10.1056/NEJMoa1103799
Burger, R. A. et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N. Engl. J. Med. 365, 2473–2483 (2011).
pubmed: 22204724
doi: 10.1056/NEJMoa1104390
Martín, A. G. et al. Exploratory outcome analyses according to stage and/or residual disease in the ICON7 trial of carboplatin and paclitaxel with or without bevacizumab for newly diagnosed ovarian cancer. Gynecol. Oncol. 152, 53–60 (2019).
doi: 10.1016/j.ygyno.2018.08.036
Monk, B. J. et al. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial. Lancet Oncol. 22, 1275–1289 (2021).
pubmed: 34363762
doi: 10.1016/S1470-2045(21)00342-9
Pujade-Lauraine, E. et al. Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study. Lancet Oncol. 22, 1034–1046 (2021).
pubmed: 34143970
doi: 10.1016/S1470-2045(21)00216-3
Konstantinopoulos, P. A. et al. TOPACIO/Keynote-162 (NCT02657889): a phase 1/2 study of niraparib + pembrolizumab in patients (pts) with advanced triple-negative breast cancer or recurrent ovarian cancer (ROC) — results from ROC cohort. J. Clin. Oncol. 36 (suppl. 15), Abstr. 106 (2018).
doi: 10.1200/JCO.2018.36.15_suppl.106
Drew, Y. et al. 1190PD Phase II study of olaparib + durvalumab (MEDIOLA): updated results in germline BRCA-mutated platinum-sensitive relapsed (PSR) ovarian cancer (OC). Ann. Oncol. 30, v485–v486 (2019).
doi: 10.1093/annonc/mdz253.016
Zsiros, E. et al. Efficacy and safety of pembrolizumab in combination with Bevacizumab and oral metronomic cyclophosphamide in the treatment of recurrent ovarian cancer. JAMA Oncol. 7, 78–85 (2021).
pubmed: 33211063
doi: 10.1001/jamaoncol.2020.5945
Breuer, E. et al. Site of recurrence and survival after surgery for colorectal peritoneal metastasis. J. Natl Cancer Inst. 113, djab001 (2021).
doi: 10.1093/jnci/djab001
Franko, J. Therapeutic efficacy of systemic therapy for colorectal peritoneal carcinomatosis: surgeon’s perspective. Pleura Peritoneum 3, 20180102 (2018).
pubmed: 30911652
pmcid: 6405010
doi: 10.1515/pp-2018-0102
Cutsem, E. V., Cervantes, A., Nordlinger, B., Arnold, D. & Group, E. G. W. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 25, iii1–iii9 (2014).
pubmed: 25190710
doi: 10.1093/annonc/mdu260
Nordlinger, B. et al. Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol. 14, 1208–1215 (2013).
pubmed: 24120480
doi: 10.1016/S1470-2045(13)70447-9
Loupakis, F. et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N. Engl. J. Med. 371, 1609–1618 (2014).
pubmed: 25337750
doi: 10.1056/NEJMoa1403108
Cremolini, C. et al. Upfront FOLFOXIRI plus bevacizumab and reintroduction after progression versus mFOLFOX6 plus bevacizumab followed by FOLFIRI plus bevacizumab in the treatment of patients with metastatic colorectal cancer (TRIBE2): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 21, 497–507 (2020).
pubmed: 32164906
doi: 10.1016/S1470-2045(19)30862-9
Ychou, M. et al. Induction chemotherapy (CT) with FOLFIRINOX or FOLFOX/FOLFIRI, plus cetuximab (CET) or bevacizumab (BEV) (by RAS status), in patients (pts) with primarily unresectable colorectal liver metastases (CRLM): results of the randomized UNICANCER PRODIGE 14-ACCORD 21 (METHEP-2) trial. J. Clin. Oncol. 36 (suppl. 15), Abstr. 3535 (2018).
doi: 10.1200/JCO.2018.36.15_suppl.3535
Rovers, K. et al. LBA-6 Safety, feasibility, tolerability, and preliminary efficacy of perioperative systemic therapy for resectable colorectal peritoneal metastases: pilot phase of a randomised trial (CAIRO6). Ann. Oncol. 31, S243 (2020).
doi: 10.1016/j.annonc.2020.04.081
Rovers, K. P. et al. Perioperative systemic therapy vs cytoreductive surgery and hyperthermic intraperitoneal chemotherapy alone for resectable colorectal peritoneal metastases. JAMA Surg. 156, 710–720 (2021).
pubmed: 34009291
doi: 10.1001/jamasurg.2021.1642
Rovers, K. P. et al. Adjuvant systemic chemotherapy vs active surveillance following up-front resection of isolated synchronous colorectal peritoneal metastases. JAMA Oncol. 6, e202701 (2020).
pubmed: 32672798
pmcid: 7366283
doi: 10.1001/jamaoncol.2020.2701
Beal, E. W. et al. Impact of neoadjuvant chemotherapy on the outcomes of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for colorectal peritoneal metastases: a multi-institutional retrospective review. J. Clin. Med. 9, 748 (2020).
pmcid: 7141272
doi: 10.3390/jcm9030748
Waite, K. & Youssef, H. The role of neoadjuvant and adjuvant systemic chemotherapy with cytoreductive surgery and heated intraperitoneal chemotherapy for colorectal peritoneal metastases: a systematic review. Ann. Surg. Oncol. 24, 705–720 (2017).
pubmed: 28058545
doi: 10.1245/s10434-016-5712-3
Chau, I. et al. Multivariate prognostic factor analysis in locally advanced and metastatic esophago-gastric cancer-pooled analysis from three multicenter, randomized, controlled trials using individual patient data. J. Clin. Oncol. 22, 2395–2403 (2004).
pubmed: 15197201
doi: 10.1200/JCO.2004.08.154
Kim, J. G. et al. Prognostic factors for survival of patients with advanced gastric cancer treated with cisplatin-based chemotherapy. Cancer Chemoth Pharm. 61, 301–307 (2008).
doi: 10.1007/s00280-007-0476-x
Thomassen, I. et al. Chemotherapy as palliative treatment for peritoneal carcinomatosis of gastric origin. Acta Oncol. 53, 429–432 (2013).
pubmed: 24304392
doi: 10.3109/0284186X.2013.850740
Shitara, K. et al. Nab-paclitaxel versus solvent-based paclitaxel in patients with previously treated advanced gastric cancer (ABSOLUTE): an open-label, randomised, non-inferiority, phase 3 trial. Lancet Gastroenterol. Hepatol. 2, 277–287 (2017).
pubmed: 28404157
doi: 10.1016/S2468-1253(16)30219-9
KINOSHITA, J. et al. Comparative study of the antitumor activity of Nab-paclitaxel and intraperitoneal solvent-based paclitaxel regarding peritoneal metastasis in gastric cancer. Oncol. Rep. 32, 89–96 (2014).
pubmed: 24859429
doi: 10.3892/or.2014.3210
Kang, Y.-K. et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390, 2461–2471 (2017).
pubmed: 28993052
doi: 10.1016/S0140-6736(17)31827-5
Janjigian, Y. Y. et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 398, 27–40 (2021).
pubmed: 34102137
pmcid: 8436782
doi: 10.1016/S0140-6736(21)00797-2
Shitara, K. et al. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: the KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol. 6, 1571–1580 (2020).
pubmed: 32880601
doi: 10.1001/jamaoncol.2020.3370
Takahashi, Y. et al. Real-world effectiveness of nivolumab in advanced gastric cancer: the DELIVER trial (JACCRO GC-08). Gastric Cancer 25, 235–244 (2022).
pubmed: 34427838
doi: 10.1007/s10120-021-01237-x
Goere, D., Glehen, O., Mariette, C., Auperin, A. & Elias, D. Results of a phase II randomized study evaluating the potential benefit of a postoperative intraperitoneal immunotherapy after resection of peritoneal metastases from gastric carcinoma metastases (IIPOP-NCT01784900). J. Clin. Oncol. 35 (suppl. 15), Abstr. 4064 (2017).
doi: 10.1200/JCO.2017.35.15_suppl.4064
Thadi, A. et al. Early investigations and recent advances in intraperitoneal immunotherapy for peritoneal metastasis. Vaccines 6, 54 (2018).
pmcid: 6160982
doi: 10.3390/vaccines6030054
Vogelzang, N. J. et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J. Clin. Oncol. 21, 2636–2644 (2003).
pubmed: 12860938
doi: 10.1200/JCO.2003.11.136
Jänne, P. A. et al. Open-label study of pemetrexed alone or in combination with cisplatin for the treatment of patients with peritoneal mesothelioma: outcomes of an expanded access program. Clin. Lung Cancer 7, 40–46 (2005).
pubmed: 16098243
doi: 10.3816/CLC.2005.n.020
Carteni, G. et al. Malignant peritoneal mesothelioma — results from the International Expanded Access Program using pemetrexed alone or in combination with a platinum agent. Lung Cancer 64, 211–218 (2009).
pubmed: 19042053
doi: 10.1016/j.lungcan.2008.08.013
Obasaju, C. K. et al. Single-arm, open label study of pemetrexed plus cisplatin in chemotherapy naïve patients with malignant pleural mesothelioma: outcomes of an expanded access program. Lung Cancer 55, 187–194 (2007).
pubmed: 17092602
doi: 10.1016/j.lungcan.2006.09.023
Kepenekian, V. et al. Diffuse malignant peritoneal mesothelioma: evaluation of systemic chemotherapy with comprehensive treatment through the RENAPE database: multi-institutional retrospective study. Eur. J. Cancer 65, 69–79 (2016).
pubmed: 27472649
doi: 10.1016/j.ejca.2016.06.002
Deraco, M., Baratti, D., Hutanu, I., Bertuli, R. & Kusamura, S. The role of perioperative systemic chemotherapy in diffuse malignant peritoneal mesothelioma patients treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann. Surg. Oncol. 20, 1093–1100 (2013).
pubmed: 23456386
doi: 10.1245/s10434-012-2845-x
Naffouje, S. A., Tulla, K. A. & Salti, G. I. The impact of chemotherapy and its timing on survival in malignant peritoneal mesothelioma treated with complete debulking. Med. Oncol. 35, 69 (2018).
pubmed: 29651664
doi: 10.1007/s12032-018-1125-4
Disselhorst, M. J. et al. Ipilimumab and nivolumab in the treatment of recurrent malignant pleural mesothelioma (INITIATE): results of a prospective, single-arm, phase 2 trial. Lancet Respir. Med. 7, 260–270 (2019).
pubmed: 30660511
doi: 10.1016/S2213-2600(18)30420-X
Baas, P. et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. Lancet 397, 375–386 (2021).
pubmed: 33485464
doi: 10.1016/S0140-6736(20)32714-8
Raghav, K. et al. Clinical efficacy of immune checkpoint inhibitors in patients with advanced malignant peritoneal mesothelioma. JAMA Netw. Open 4, e2119934 (2021).
pubmed: 34357397
pmcid: 8346939
doi: 10.1001/jamanetworkopen.2021.19934
Maio, M. et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): a multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 18, 1261–1273 (2017).
pubmed: 28729154
doi: 10.1016/S1470-2045(17)30446-1
Desai, A. et al. OA08.03 Phase II trial of pembrolizumab (NCT02399371) in previously-treated malignant mesothelioma (MM): final analysis. J. Thorac. Oncol. 13, S339 (2018).
doi: 10.1016/j.jtho.2018.08.277
Fennell, D. A. et al. Nivolumab versus placebo in patients with relapsed malignant mesothelioma (CONFIRM): a multicentre, double-blind, randomised, phase 3 trial. Lancet Oncol. 22, 1530–1540 (2021).
pubmed: 34656227
pmcid: 8560642
doi: 10.1016/S1470-2045(21)00471-X
Blackham, A. U. et al. Perioperative systemic chemotherapy for appendiceal mucinous carcinoma peritonei treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J. Surg. Oncol. 109, 740–745 (2014).
pubmed: 24375188
doi: 10.1002/jso.23547
Lu, P. et al. Systemic chemotherapy and survival in patients with metastatic low-grade appendiceal mucinous adenocarcinoma. J. Surg. Oncol. 120, 446–451 (2019).
pubmed: 31236958
pmcid: 6675644
doi: 10.1002/jso.25599
Turner, K. M. et al. Assessment of neoadjuvant chemotherapy on operative parameters and outcome in patients with peritoneal dissemination from high-grade appendiceal cancer. Ann. Surg. Oncol. 20, 1068–1073 (2013).
pubmed: 23456383
doi: 10.1245/s10434-012-2789-1
Lieu, C. H. et al. Systemic chemotherapy and surgical cytoreduction for poorly differentiated and signet ring cell adenocarcinomas of the appendix. Ann. Oncol. 23, 652–658 (2012).
pubmed: 21653683
doi: 10.1093/annonc/mdr279
Bijelic, L., Kumar, A. S., Stuart, O. A. & Sugarbaker, P. H. Systemic chemotherapy prior to cytoreductive surgery and hipec for carcinomatosis from appendix cancer: impact on perioperative outcomes and short-term survival. Gastroenterol. Res. Pract. 2012, 163284 (2012).
pubmed: 22899903
pmcid: 3412098
doi: 10.1155/2012/163284
Shapiro, J. F. et al. Modern systemic chemotherapy in surgically unresectable neoplasms of appendiceal origin: a single-institution experience. Cancer 116, 316–322 (2010).
pubmed: 19904805
doi: 10.1002/cncr.24715
Munoz-Zuluaga, C. A. et al. Systemic chemotherapy before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) in patients with high-grade mucinous carcinoma peritonei of appendiceal origin. Eur. J. Surg. Oncol. 45, 1598–1606 (2019).
pubmed: 31109821
doi: 10.1016/j.ejso.2019.05.008
Baratti, D. et al. Pseudomyxoma peritonei: clinical pathological and biological prognostic factors in patients treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC). Ann. Surg. Oncol. 15, 526–534 (2007).
pubmed: 18043976
doi: 10.1245/s10434-007-9691-2
Milovanov, V. et al. Systemic chemotherapy (SC) before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) in patients with peritoneal mucinous carcinomatosis of appendiceal origin (PMCA). Eur. J. Surg. Oncol. 41, 707–712 (2015).
pubmed: 25633641
doi: 10.1016/j.ejso.2015.01.005
Choe, J. H. et al. Improved survival with anti-VEGF therapy in the treatment of unresectable appendiceal epithelial neoplasms. Ann. Surg. Oncol. 22, 2578–2584 (2015).
pubmed: 25582740
doi: 10.1245/s10434-014-4335-9
Kus, T. et al. Prediction of peritoneal recurrence in patients with gastric cancer: a multicenter study. J. Gastrointest. Cancer 52, 634–642 (2021).
pubmed: 32578034
doi: 10.1007/s12029-020-00419-7
Willett, C. G., Tepper, J. E., Cohen, A. M., Orlow, E. & Welch, C. E. Failure patterns following curative resection of colonic carcinoma. Ann. Surg. 200, 685–690 (1984).
pubmed: 6508395
pmcid: 1250581
doi: 10.1097/00000658-198412000-00001
Minton, J. P. et al. Results of a 400-patient carcinoembryonic antigen second-look colorectal cancer study. Cancer 55, 1284–1290 (1985).
pubmed: 3971297
doi: 10.1002/1097-0142(19850315)55:6<1284::AID-CNCR2820550622>3.0.CO;2-B
Elias, D. et al. Results of systematic second-look surgery in patients at high risk of developing colorectal peritoneal carcinomatosis. Ann. Surg. 247, 445–450 (2008).
pubmed: 18376188
doi: 10.1097/SLA.0b013e31815f0113
Sugarbaker, P. H. Revised guidelines for second-look surgery in patients with colon and rectal cancer. Clin. Transl. Oncol. 12, 621–628 (2010).
pubmed: 20851803
doi: 10.1007/s12094-010-0567-8
Honoré, C., Goere, D., Souadka, A., Dumont, F. & Elias, D. Definition of patients presenting a high risk of developing peritoneal carcinomatosis after curative surgery for colorectal cancer: a systematic review. Ann. Surg. Oncol. 20, 183–192 (2013).
pubmed: 23090572
doi: 10.1245/s10434-012-2473-5
Sugarbaker, P. H. Second-look surgery for colorectal cancer: revised selection factors and new treatment options for greater success. Int. J. Surg. Oncol. 2011, 915078 (2011).
pubmed: 22312530
Sammartino, P. et al. Proactive management for gastric, colorectal and appendiceal malignancies: preventing peritoneal metastases with hyperthermic intraperitoneal chemotherapy (HIPEC). Indian J. Surg. Oncol. 7, 215–224 (2016).
pubmed: 27065712
pmcid: 4818609
doi: 10.1007/s13193-016-0497-1
Rekhraj, S. et al. Can intra-operative intraperitoneal free cancer cell detection techniques identify patients at higher recurrence risk following curative colorectal cancer resection: a meta-analysis. Ann. Surg. Oncol. 15, 60–68 (2008).
pubmed: 17909914
doi: 10.1245/s10434-007-9591-5
Katoh, H. et al. Prognostic significance of peritoneal tumour cells identified at surgery for colorectal cancer. Br. J. Surg. 96, 769–777 (2009).
pubmed: 19526618
doi: 10.1002/bjs.6622
Tan, K.-L., Tan, W.-S., Lim, J.-F. & Eu, K.-W. Krukenberg tumors of colorectal origin: a dismal outcome — experience of a tertiary center. Int. J. Colorectal Dis. 25, 233–238 (2009).
pubmed: 19705132
doi: 10.1007/s00384-009-0796-x
Cheynel, N. et al. Incidence, patterns of failure, and prognosis of perforated colorectal cancers in a well-defined population. Dis. Colon Rectum 52, 406–411 (2009).
pubmed: 19333039
doi: 10.1007/DCR.0b013e318197e351
van Santvoort, H. C. et al. Peritoneal carcinomatosis in t4 colorectal cancer: occurrence and risk factors. Ann. Surg. Oncol. 21, 1686–1691 (2014).
pubmed: 24398543
doi: 10.1245/s10434-013-3461-0
Trilling, B. et al. Intraperitoneal-free cancer cells represent a major prognostic factor in colorectal peritoneal carcinomatosis. Dis. Colon Rectum 59, 615–622 (2016).
pubmed: 27270513
doi: 10.1097/DCR.0000000000000589
Bhatt, A. et al. Patients with extensive regional lymph node involvement (pN2) following potentially curative surgery for colorectal cancer are at increased risk for developing peritoneal metastases: a retrospective single-institution study. Colorectal Dis. 21, 287–296 (2019).
pubmed: 30457185
doi: 10.1111/codi.14481
Klaver, C. E. L. et al. Locally advanced colorectal cancer: true peritoneal tumor penetration is associated with peritoneal metastases. Ann. Surg. Oncol. 25, 212–220 (2018).
pubmed: 29076043
doi: 10.1245/s10434-017-6037-6
Arrizabalaga, N. B. et al. Prophylactic HIPEC in pT4 colon tumors: proactive approach or overtreatment? Ann. Surg. Oncol. 27, 1094–1100 (2020).
pubmed: 31664619
doi: 10.1245/s10434-019-07970-z
Veld, J. V. et al. Synchronous and metachronous peritoneal metastases in patients with left-sided obstructive colon cancer. Ann. Surg. Oncol. 27, 2762–2773 (2020).
pubmed: 32170481
pmcid: 7334250
doi: 10.1245/s10434-020-08327-7
Elias, D. et al. Results of systematic second-look surgery plus HIPEC in asymptomatic patients presenting a high risk of developing colorectal peritoneal carcinomatosis. Ann. Surg. 254, 289–293 (2011).
pubmed: 21709543
doi: 10.1097/SLA.0b013e31822638f6
Stewart, C. J. R., Hillery, S. & Plattell, C. Protocol for the examination of specimens from patients with primary carcinomas of the colon and rectum. Arch. Pathol. Lab. Med. 133, 1182–1193 (2009). 1359-60-author reply 1360-1.
doi: 10.5858/133.9.1359
Panarelli, N. C., Schreiner, A. M., Brandt, S. M., Shepherd, N. A. & Yantiss, R. K. Histologic features and cytologic techniques that aid pathologic stage assessment of colonic adenocarcinoma. Am. J. Surg. Pathol. 37, 1252–1258 (2013).
pubmed: 23774176
doi: 10.1097/PAS.0b013e3182960e7c
Frankel, W. L. & Jin, M. Serosal surfaces, mucin pools, and deposits, oh my: challenges in staging colorectal carcinoma. Mod. Pathol. 28 (Suppl. 1), S95–S108 (2015).
pubmed: 25560604
doi: 10.1038/modpathol.2014.128
Klaver, C. E. L. et al. Interobserver, intraobserver, and interlaboratory variability in reporting pT4a colon cancer. Virchows Arch. 476, 219–230 (2019).
pubmed: 31616981
pmcid: 7028812
doi: 10.1007/s00428-019-02663-0
Sun, Z. et al. A novel subclassification of pT2 gastric cancers according to the depth of muscularis propria invasion. Ann. Surg. 249, 768–775 (2009).
pubmed: 19387327
doi: 10.1097/SLA.0b013e3181a3df77
Park, D. J. et al. Subclassification of pT2 gastric adenocarcinoma according to depth of invasion (pT2a vs pT2b) and lymph node status (pN). Surgery 141, 757–763 (2007).
pubmed: 17560252
doi: 10.1016/j.surg.2007.01.023
Klaver, C. E. L. et al. Adjuvant hyperthermic intraperitoneal chemotherapy in patients with locally advanced colon cancer (COLOPEC): a multicentre, open-label, randomised trial. Lancet Gastroenterol. Hepatol. 4, 761–770 (2019).
pubmed: 31371228
doi: 10.1016/S2468-1253(19)30239-0
Baratti, D. et al. Hyperthermic intraperitoneal chemotherapy (HIPEC) at the time of primary curative surgery in patients with colorectal cancer at high risk for metachronous peritoneal metastases. Ann. Surg. Oncol. 24, 167–175 (2017).
pubmed: 27519353
doi: 10.1245/s10434-016-5488-5
Koh, J.-L., Yan, T. D., Glenn, D. & Morris, D. L. Evaluation of preoperative computed tomography in estimating peritoneal cancer index in colorectal peritoneal carcinomatosis. Ann. Surg. Oncol. 16, 327–333 (2009).
pubmed: 19050972
doi: 10.1245/s10434-008-0234-2
Nordlinger, B. et al. Adjuvant regional chemotherapy and systemic chemotherapy versus systemic chemotherapy alone in patients with stage II-III colorectal cancer: a multicentre randomised controlled phase III trial. Lancet Oncol. 6, 459–468 (2005).
pubmed: 15992694
doi: 10.1016/S1470-2045(05)70222-9
Sloothaak, D. A. M. et al. Intraperitoneal chemotherapy as adjuvant treatment to prevent peritoneal carcinomatosis of colorectal cancer origin: a systematic review. Br. J. Cancer 111, 1112–1121 (2014).
pubmed: 25025964
pmcid: 4453838
doi: 10.1038/bjc.2014.369
Bennouna, J. et al. Rationale and design of the IROCAS study: multicenter, international, randomized phase 3 trial comparing adjuvant modified (m) FOLFIRINOX to mFOLFOX6 in patients with high-risk stage III (pT4 and/or N2) colon cancer — A UNICANCER GI-PRODIGE Trial. Clin. Colorectal Cancer 18, e69–e73 (2019).
pubmed: 30415988
doi: 10.1016/j.clcc.2018.09.011
Al-Batran, S.-E. et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 393, 1948–1957 (2019).
pubmed: 30982686
doi: 10.1016/S0140-6736(18)32557-1
Arjona-Sánchez, Á. et al. HIPECT4: multicentre, randomized clinical trial to evaluate safety and efficacy of hyperthermic intra-peritoneal chemotherapy (HIPEC) with mitomycin C used during surgery for treatment of locally advanced colorectal carcinoma. BMC cancer 18, 183–188 (2018).
pubmed: 29439668
pmcid: 5812226
doi: 10.1186/s12885-018-4096-0
Koga, S. et al. Prophylactic therapy for peritoneal recurrence of gastric cancer by continuous hyperthermic peritoneal perfusion with mitomycin C. Cancer 61, 232–237 (1988).
pubmed: 3121165
doi: 10.1002/1097-0142(19880115)61:2<232::AID-CNCR2820610205>3.0.CO;2-U
Zhu, L. et al. Prophylactic chemotherapeutic hyperthermic intraperitoneal perfusion reduces peritoneal metastasis in gastric cancer: a retrospective clinical study. BMC Cancer 20, 827 (2020).
pubmed: 32867714
pmcid: 7461269
doi: 10.1186/s12885-020-07339-6
Yonemura, Y. et al. Intraoperative chemohyperthermic peritoneal perfusion as an adjuvant to gastric cancer: final results of a randomized controlled study. Hepatogastroenterol 48, 1776–1782 (2001).
Brenkman, H. J. F., Päeva, M., Hillegersberg, R., van, Ruurda, J. P. & Mohammad, N. H. Prophylactic hyperthermic intraperitoneal chemotherapy (HIPEC) for gastric cancer — a systematic review. J. Clin. Med. 8, 1685 (2019).
pmcid: 6832700
doi: 10.3390/jcm8101685
Glehen, O. et al. GASTRICHIP: D2 resection and hyperthermic intraperitoneal chemotherapy in locally advanced gastric carcinoma: a randomized and multicenter phase III study. BMC Cancer 14, 183 (2014).
pubmed: 24628950
pmcid: 3995601
doi: 10.1186/1471-2407-14-183
Argani, P. et al. Pediatric mesothelioma with ALK fusions. Am. J. Surg. Pathol. 45, 653–661 (2021).
pubmed: 33399341
pmcid: 8035308
doi: 10.1097/PAS.0000000000001656
Desmeules, P. et al. A subset of malignant mesotheliomas in young adults are associated with recurrent EWSR1/FUS-ATF1 fusions. Am. J. Surg. Pathol. 41, 980–988 (2017).
pubmed: 28505004
pmcid: 5468482
doi: 10.1097/PAS.0000000000000864
Argani, P. et al. EWSR1/FUS-CREB fusions define a distinctive malignant epithelioid neoplasm with predilection for mesothelial-lined cavities. Mod. Pathol. 33, 2233–2243 (2020).
pubmed: 32770123
pmcid: 7584759
doi: 10.1038/s41379-020-0646-5
Raghav, K. et al. Efficacy, safety and biomarker analysis of combined PD-L1 (atezolizumab) and VEGF (bevacizumab) blockade in advanced malignant peritoneal mesothelioma. Cancer Discov. 11, 2738–2747 (2021).
pubmed: 34261675
pmcid: 8563380
doi: 10.1158/2159-8290.CD-21-0331
Khanna, S. et al. Malignant mesothelioma effusions are infiltrated by CD3
pubmed: 27544053
pmcid: 5075512
doi: 10.1016/j.jtho.2016.07.033
Valmary-Degano, S. et al. Immunohistochemical evaluation of two antibodies against PD-L1 and prognostic significance of PD-L1 expression in epithelioid peritoneal malignant mesothelioma: a RENAPE study. Eur. J. Surg. Oncol. 43, 1915–1923 (2017).
pubmed: 28619621
doi: 10.1016/j.ejso.2017.05.009
Chapel, D. B. et al. Tumor PD-L1 expression in malignant pleural and peritoneal mesothelioma by Dako PD-L1 22C3 pharmDx and Dako PD-L1 28-8 pharmDx assays. Hum. Pathol. 87, 11–17 (2019).
pubmed: 30794891
doi: 10.1016/j.humpath.2019.02.001
Arjona-Sánchez, Á. et al. A proposal for modification of the PSOGI classification according to the Ki-67 proliferation index in pseudomyxoma peritonei. Ann. Surg. Oncol. 29, 126–136 (2022).
pubmed: 34215955
doi: 10.1245/s10434-021-10372-9
Tokunaga, R. et al. Molecular profiling of appendiceal adenocarcinoma and comparison with right-sided and left-sided colorectal cancer. Clin. Cancer Res. 25, 3096–3103 (2019).
pubmed: 30692096
pmcid: 6886223
doi: 10.1158/1078-0432.CCR-18-3388
Koopman, M. et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer 100, 266–273 (2009).
pubmed: 19165197
pmcid: 2634718
doi: 10.1038/sj.bjc.6604867
Liu, X. et al. High PD-L1 expression in gastric cancer (GC) patients and correlation with molecular features. Pathol. Res. Pract. 216, 152881 (2020).
pubmed: 32089413
doi: 10.1016/j.prp.2020.152881
Fuchs, C. S. et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 Trial. JAMA Oncol. 4, e180013 (2018).
pubmed: 29543932
pmcid: 5885175
doi: 10.1001/jamaoncol.2018.0013
Wang, F. et al. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ib/II clinical trial NCT02915432. Ann. Oncol. 30, 1479–1486 (2019).
pubmed: 31236579
pmcid: 6771223
doi: 10.1093/annonc/mdz197
Drakes, M. L. et al. Stratification of ovarian tumor pathology by expression of programmed cell death-1 (PD-1) and PD-ligand- 1 (PD-L1) in ovarian cancer. J. Ovarian Res. 11, 43 (2018).
pubmed: 29843813
pmcid: 5975524
doi: 10.1186/s13048-018-0414-z
Hamanishi, J. et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8
pubmed: 17360651
pmcid: 1805580
doi: 10.1073/pnas.0611533104
Verwaal, V. J. et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J. Clin. Oncol. 21, 3737–3743 (2003).
pubmed: 14551293
doi: 10.1200/JCO.2003.04.187
Verwaal, V. J., Bruin, S., Boot, H., van Slooten, G. & van Tinteren, H. 8-year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann. Surg. Oncol. 15, 2426–2432 (2008).
pubmed: 18521686
doi: 10.1245/s10434-008-9966-2
Cashin, P. H. et al. Cytoreductive surgery and intraperitoneal chemotherapy versus systemic chemotherapy for colorectal peritoneal metastases: a randomised trial. Eur. J. Cancer 53, 155–162 (2016).
pubmed: 26751236
doi: 10.1016/j.ejca.2015.09.017
Lemoine, L. et al. Body surface area-based vs concentration-based perioperative intraperitoneal chemotherapy after optimal cytoreductive surgery in colorectal peritoneal surface malignancy treatment: COBOX trial. J. Surg. Oncol. 119, 999–1010 (2019).
pubmed: 30838646
doi: 10.1002/jso.25437
Zivanovic, O. et al. Secondary cytoreduction and carboplatin hyperthermic intraperitoneal chemotherapy for platinum-sensitive recurrent ovarian cancer: an MSK team ovary phase II study. J. Clin. Oncol. 39, 2594–2604 (2021).
pubmed: 34019431
pmcid: 8330970
doi: 10.1200/JCO.21.00605
Fagotti, A. et al. Randomized trial of primary debulking surgery versus neoadjuvant chemotherapy for advanced epithelial ovarian cancer (SCORPION-NCT01461850). Int. J. Gynecol. Cancer 30, 1657–1664 (2020).
pubmed: 33028623
doi: 10.1136/ijgc-2020-001640
Lim, M. C. et al. Survival after hyperthermic intraperitoneal chemotherapy and primary or interval cytoreductive surgery in ovarian cancer. JAMA Surg. 157, 374–383 (2022).
pubmed: 35262624
pmcid: 8908225
doi: 10.1001/jamasurg.2022.0143
Levine, E. A. et al. A multicenter randomized trial to evaluate hematologic toxicities after hyperthermic intraperitoneal chemotherapy with oxaliplatin or mitomycin in patients with appendiceal tumors. J. Am. Coll. Surg. 226, 434–443 (2018).
pubmed: 29331663
pmcid: 5890298
doi: 10.1016/j.jamcollsurg.2017.12.027
Wallner, K. E., Banda, M. & Li, G. C. Hyperthermic enhancement of cell killing by mitomycin C in mitomycin C-resistant Chinese hamster ovary cells. Cancer Res. 47, 1308–1312 (1987).
pubmed: 3102043
Harrison, L. E., Bryan, M., Pliner, L. & Saunders, T. Phase I trial of pegylated liposomal doxorubicin with hyperthermic intraperitoneal chemotherapy in patients undergoing cytoreduction for advanced intra-abdominal malignancy. Ann. Surg. Oncol. 15, 1407–1413 (2008).
pubmed: 18157576
doi: 10.1245/s10434-007-9718-8
Huang, Y., Alzahrani, N. A., Liauw, W., Traiki, T. B. & Morris, D. L. Early postoperative intraperitoneal chemotherapy for low-grade appendiceal mucinous neoplasms with pseudomyxoma peritonei: is it beneficial? Ann. Surg. Oncol. 24, 176–183 (2017).
pubmed: 27718032
doi: 10.1245/s10434-016-5529-0
Sugarbaker, P. H. & Chang, D. Cytoreductive surgery plus HIPEC with and without NIPEC for malignant peritoneal mesothelioma: a propensity-matched analysis. Ann. Surg. Oncol. 28, 7109–7117 (2021).
pubmed: 33942167
doi: 10.1245/s10434-021-10048-4