Assessment of a Computational Approach to Predict Drug Resistance Mutations for HIV, HBV and SARS-CoV-2.
3CLpro
HBV
HIV
MM-GBSA
RT
SARS-CoV-2
capsid
drug resistance
emtricitabine
mutation
nirmatrelvir
residue scanning
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
24 Aug 2022
24 Aug 2022
Historique:
received:
18
07
2022
revised:
18
08
2022
accepted:
22
08
2022
entrez:
9
9
2022
pubmed:
10
9
2022
medline:
14
9
2022
Statut:
epublish
Résumé
Viral resistance is a worldwide problem mitigating the effectiveness of antiviral drugs. Mutations in the drug-targeting proteins are the primary mechanism for the emergence of drug resistance. It is essential to identify the drug resistance mutations to elucidate the mechanism of resistance and to suggest promising treatment strategies to counter the drug resistance. However, experimental identification of drug resistance mutations is challenging, laborious and time-consuming. Hence, effective and time-saving computational structure-based approaches for predicting drug resistance mutations are essential and are of high interest in drug discovery research. However, these approaches are dependent on accurate estimation of binding free energies which indirectly correlate to the computational cost. Towards this goal, we developed a computational workflow to predict drug resistance mutations for any viral proteins where the structure is known. This approach can qualitatively predict the change in binding free energies due to mutations through residue scanning and Prime MM-GBSA calculations. To test the approach, we predicted resistance mutations in HIV-RT selected by (-)-FTC and demonstrated accurate identification of the clinical mutations. Furthermore, we predicted resistance mutations in HBV core protein for GLP-26 and in SARS-CoV-2 3CLpro for nirmatrelvir. Mutagenesis experiments were performed on two predicted resistance and three predicted sensitivity mutations in HBV core protein for GLP-26, corroborating the accuracy of the predictions.
Identifiants
pubmed: 36080181
pii: molecules27175413
doi: 10.3390/molecules27175413
pmc: PMC9457688
pii:
doi:
Substances chimiques
Antiviral Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIAID NIH HHS
ID : R01 AI161570
Pays : United States
Organisme : NIH HHS
ID : R01-AI132833
Pays : United States
Organisme : NIH HHS
ID : R01AI148740
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI148740
Pays : United States
Organisme : NIH HHS
ID : R01-AI-161570
Pays : United States
Références
J Comput Chem. 2015 Feb 15;36(5):348-54
pubmed: 25487359
Antimicrob Agents Chemother. 2020 Jan 27;64(2):
pubmed: 31712213
Antivir Ther. 2005;10(1):157-66
pubmed: 15751773
Curr Opin Infect Dis. 2014 Dec;27(6):566-72
pubmed: 25313501
Postepy Biochem. 2016;62(3):273-279
pubmed: 28132481
Proteins. 2011 Mar;79(3):830-8
pubmed: 21287615
Hepatology. 2001 Mar;33(3):751-7
pubmed: 11230757
Antiviral Res. 2002 Dec;56(3):189-205
pubmed: 12406504
Hepatology. 2019 Jul;70(1):11-24
pubmed: 30664279
Antimicrob Agents Chemother. 1993 Apr;37(4):875-81
pubmed: 7684216
Antiviral Res. 2018 Oct;158:103-112
pubmed: 30086337
Biophys J. 2020 Jul 7;119(1):115-127
pubmed: 32533939
Science. 1998 Jun 19;280(5371):1871-3
pubmed: 9669946
Virus Evol. 2016 Jun 10;2(1):vew014
pubmed: 28694997
Annu Rev Virol. 2020 Sep 29;7(1):263-288
pubmed: 32600157
J Virol. 1995 Sep;69(9):5437-44
pubmed: 7636989
Acta Oncol. 1991;30(1):87-105
pubmed: 2009189
Bioorg Med Chem. 2017 Feb 1;25(3):1042-1056
pubmed: 28082068
Virologie (Montrouge). 2020 Oct 1;24(5):325-342
pubmed: 33111706
IEEE/ACM Trans Comput Biol Bioinform. 2018 May-Jun;15(3):966-973
pubmed: 27992346
PLoS One. 2013 Dec 10;8(12):e82849
pubmed: 24340062
Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4096-100
pubmed: 8171040
Drug Discov Today. 2012 Oct;17(19-20):1121-6
pubmed: 22789991
Liver Int. 2014 Feb;34 Suppl 1:69-78
pubmed: 24373081
J Mol Biol. 2002 Jul 5;320(2):369-87
pubmed: 12079393
Antiviral Res. 2011 Nov;92(2):213-8
pubmed: 21875619
Expert Opin Drug Discov. 2015 May;10(5):449-61
pubmed: 25835573
Nucleic Acids Res. 2003 Jul 1;31(13):3850-5
pubmed: 12824435
J Antimicrob Chemother. 2020 Sep 1;75(9):2526-2534
pubmed: 32417895
Viruses. 2020 May 19;12(5):
pubmed: 32438586
J Virol. 2018 Sep 26;92(20):
pubmed: 30089690
BMC Bioinformatics. 2016 Aug 22;17(1):314
pubmed: 27549230
PLoS One. 2016 Dec 16;11(12):e0168616
pubmed: 27992544
J Chem Theory Comput. 2021 Apr 13;17(4):2457-2464
pubmed: 33709712
J Med Chem. 2007 Mar 22;50(6):1177-88
pubmed: 17300185
Eur J Med Chem. 2022 Oct 5;240:114554
pubmed: 35792384
Bioorg Med Chem. 2021 Feb 1;31:115952
pubmed: 33421915
Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5653-6
pubmed: 7685907
J Mol Biol. 2002 Jul 12;320(3):597-608
pubmed: 12096912
Drug Discov Today. 2005 Apr 1;10(7):521-9
pubmed: 15809198
J Comput Aided Mol Des. 2007 Dec;21(12):681-91
pubmed: 17899391
Annu Rev Pharmacol Toxicol. 1996;36:545-71
pubmed: 8725401
Chem Rev. 2019 Aug 28;119(16):9478-9508
pubmed: 31244000
Antiviral Res. 2006 Nov;72(2):116-24
pubmed: 16780964
Viruses. 2021 Jan 15;13(1):
pubmed: 33467678
Science. 1989 Dec 1;246(4934):1155-8
pubmed: 2479983
Antimicrob Agents Chemother. 1992 Nov;36(11):2423-31
pubmed: 1283296
Proteins. 2004 May 1;55(2):351-67
pubmed: 15048827
J Med Virol. 2021 Aug;93(8):4982-4991
pubmed: 33783006
Drug Des Discov. 1996 Apr;13(3-4):29-47
pubmed: 8874042
Nucleosides Nucleotides Nucleic Acids. 2006;25(1):89-107
pubmed: 16440988