Effects of Lipophilicity and Structural Features on the Antiherpes Activity of Digitalis Cardenolides and Derivatives.


Journal

Chemistry & biodiversity
ISSN: 1612-1880
Titre abrégé: Chem Biodivers
Pays: Switzerland
ID NLM: 101197449

Informations de publication

Date de publication:
Oct 2022
Historique:
received: 28 04 2022
accepted: 06 09 2022
pubmed: 11 9 2022
medline: 22 10 2022
entrez: 10 9 2022
Statut: ppublish

Résumé

There is growing interest in exploring Digitalis cardenolides as potential antiviral agents. Hence, we herein investigated the influence of structural features and lipophilicity on the antiherpes activity of 65 natural and semisynthetic cardenolides assayed in vitro against HSV-1. The presence of an α,β-unsaturated lactone ring at C-17, a β-hydroxy group at C-14 and C-3β-OR substituents were considered essential requirements for this biological activity. Glycosides were more active than their genins, especially monoglycosides containing a rhamnose residue. The activity enhanced in derivatives bearing an aldehyde group at C-19 instead of a methyl group, whereas inserting a C-5β-OH improved the antiherpes effect significantly. The cardenolides lipophilicity was accessed by measuring experimentally their log P values (n-octanol-water partition coefficient) and disclosed a range of lipophilicity (log P 0.75±0.25) associated with the optimal antiherpes activity. In silico studies were carried out and resulted in the establishment of two predictive models potentially useful to identify and/or optimize novel antiherpes cardenolides. The effectiveness of the models was confirmed by retrospective analysis of the studied compounds. This is the first SAR study addressing the antiherpes activity of cardenolides. The developed computational models were able to predict the active cardenolides and their log P values.

Identifiants

pubmed: 36085355
doi: 10.1002/cbdv.202200411
doi:

Substances chimiques

Cardenolides 0
1-Octanol NV1779205D
Rhamnose QN34XC755A
Plant Extracts 0
Antiviral Agents 0
Glycosides 0
Lactones 0
Aldehydes 0
Water 059QF0KO0R

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202200411

Subventions

Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 490057/2011-0
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 472544/2013-6
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 305878/2016-6
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : PNPD 2257/2011
Organisme : Fapemig
Organisme : APQ-00538-17
Organisme : IRSES/European Community
ID : 295251
Organisme : Hospital University of Tübingen

Informations de copyright

© 2022 The Authors. Chemistry & Biodiversity published by Wiley-VHCA AG, Zurich, Switzerland.

Références

K. J. Looker, A. S. Magaret, M. T. May, K. M. Turner, P. Vickerman, S. L. Gottlieb, L. M. Newman, ‘Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012’, PLoS One 2015, 10, e0140765.
K. J. Looker, A. S. Magaret, K. M. Turner, P. Vickerman, S. L. Gottlieb, L. M. Newman, ‘Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012’, PLoS One 2015, 10, e114989.
Y. C. Jiang, H. Feng, Y. C. Lin, X. R. Guo, ‘New strategies against drug resistance to herpes simplex virus’, Int. J. Oral Sci. 2016, 8, 1-6.
J. Piret, G. Boivin, ‘Resistance of herpes simplex viruses to nucleoside analogs: mechanisms, prevalence, and management’, Antimicrob. Agents Chemother. 2011, 55, 459-472.
M. Akram, I. M. Tahir, S. M. A. Shah, Z. Mahmood, A. Altaf, K. Ahmad, N. Munir, M. Daniyal, S. Nasir, H. Mehboob, ‘Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review’, Phytother. Res. 2018, 32, 811-822.
M. Denaro, A. Smeriglio, D. Barreca, C. De Francesco, C. Occhiuto, G. Milano, D. Trombetta, ‘Antiviral activity of plants and their isolated bioactive compounds: An update’, Phytother. Res. 2020, 34, 742-768.
V. M. Buckalew, ‘Endogenous digitalis-like factors: an overview of the history’, Front. Endocrinol. 2015, 6, 49.
L. H. Opie, ‘Digitalis, yesterday and today, but not forever’, Circ. Cardiovasc. Qual. Outcomes. 2013, 6, 511-513.
A. F. M. Botelho, F. Pierezan, B. Soto-Blanco, M. M. Melo, ‘A review of cardiac glycosides: Structure, toxicokinetics, clinical signs, diagnosis and antineoplastic potential’, Toxicon 2019, 158, 63-68.
D. Reddy, R. Kumavath, D. Barh, V. Azevedo, P. Ghosh, ‘Anticancer and Antiviral Properties of Cardiac Glycosides: A Review to Explore the Mechanism of Actions’, Molecules 2020, 25, 3596.
A. W. Dodson, T. J. Taylor, D. M. Knipe, D. M. Coen, ‘Inhibitors of the sodium potassium ATPase that impair herpes simplex virus replication identified via a chemical screening approach’, Virology 2007, 366, 340-348.
H. H. Hoffmann, P. Palese, M. L. Shaw, ‘Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity’, Antiviral Res. 2008, 80, 124-134.
J. W. Bertol, C. Rigotto, R. M. Pádua, W. Kreis, C. R. Barardi, F. C. Braga, C. M. Simoes, ‘Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata’, Antiviral Res. 2011, 92, 73-80.
L. Boff, N. F. Z. Schneider, J. Munkert, F. M. Ottoni, G. S. Ramos, W. Kreis, F. C. Braga, R. J. Alves, R. M. de Padua, C. M. O. Simoes, ‘Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives’, Arch. Virol. 2020, 165, 1385-1396.
R. Tamaian, A. Moţ, R. Silaghi-Dumitrescu, I. Ionuţ, A. Stana, O. Oniga, C. Nastasă, D. Benedec, B. Tiperciuc, ‘Study of the Relationships between the Structure, Lipophilicity and Biological Activity of Some Thiazolyl-carbonyl-thiosemicarbazides and Thiazolyl-azoles’, Molecules 2015, 20, 19841.
Y. B. L. Moreno, E. Urban, M. Gelbcke, F. Dufrasne, B. Kopp, R. Kiss, M. Zehl, ‘Structure-activity relationship analysis of bufadienolide-induced in vitro growth inhibitory effects on mouse and human cancer cells’, J. Nat. Prod. 2013, 76, 1078-1084.
I. T. Silva, J. Munkert, E. Nolte, N. F. Z. Schneider, S. C. Rocha, A. C. P. Ramos, W. Kreis, F. C. Braga, R. M. Pádua, A. G. Taranto, V. Cortes, L. A. Barbosa, S. Wach, H. Taubert, C. M. O. Simões, ‘Cytotoxicity of AMANTADIG - a semisynthetic digitoxigenin derivative - alone and in combination with docetaxel in human hormone-refractory prostate cancer cells and its effect on Na(+)/K(+)-ATPase inhibition’, Biomed. Pharmacother. 2018, 107, 464-474.
B. Rossi, G. Ponzio, M. Lazdunski, ‘Identification of the segment of the catalytic subunit of (Na+,K+) ATPase containing the digitalis binding site’, EMBO J. 1982, 1, 859-861.
H. Ogawa, T. Shinoda, F. Cornelius, C. Toyoshima, ‘Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain’, Proc. Nat. Acad. Sci. 2009, 106, 13742-13747.
H.-Y. L Wang, W. Xin, M. Zhou, T. A. Stueckle, Y. Rojanasakul, G. A. O′Doherty, ‘Stereochemical Survey of Digitoxin Monosaccharides’, ACS Med. Chem. Lett. 2011, 2, 73-78.
M. Laursen, J. L. Gregersen, L. Yatime, P. Nissen, N. U. Fedosova, ‘Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex’, Proc. Natl. Acad. Sci. USA 2015, 112, 1755-1760.
S. P. Gupta, ‘Quantitative Structure-Activity Relationship Studies on Na+,K+-ATPase Inhibitors’, Chem. Rev. 2012, 112, 3171-3192.
T. Mijatovic, F. Dufrasne, R. Kiss, ‘Cardiotonic Steroids-Mediated Targeting of the Na+/K+-ATPase to Combat Chemoresistant Cancers’, Curr. Med. Chem. 2012, 19, 627-646.
M. Zeino, R. Brenk, L. Gruber, M. Zehl, E. Urban, B. Kopp, T. Efferth, ‘Cytotoxicity of cardiotonic steroids in sensitive and multidrug-resistant leukemia cells and the link with Na+/K+-ATPase’, J. Steroid Biochem. Mol. Biol. 2015, 150, 97-111.
S. E. Meneses-Sagrero, L. A. Rascón-Valenzuela, R. Sotelo-Mundo, W. Vilegas, C. Velazquez, J. C. García-Ramos, R. E. Robles-Zepeda, ‘Antiproliferative activity of cardenolides on cell lines A549: structure-activity relationship analysis’, Mol. Diversity 2020, 25, 2289-2305.
S. C. Rocha, M. T. Pessoa, L. D. Neves, S. L. Alves, L. M. Silva, H. L. Santos, S. M. Oliveira, A. G. Taranto, M. Comar, I. V. Gomes, F. V. Santos, N. Paixão, L. E. Quintas, F. Noel, A. F. Pereira, A. C. Tessis, N. L. Gomes, O. C. Moreira, R. Rincon-Heredia, F. P. Varotti, G. Blanco, J. A. Villar, R. G. Contreras, L. A. Barbosa, ‘21-Benzylidene digoxin: a proapoptotic cardenolide of cancer cells that up-regulates Na,K-ATPase and epithelial tight junctions’, PLoS One 2014, 9, e108776.
A. Askari, ‘The sodium pump and digitalis drugs: Dogmas and fallacies’, Pharmacol. Res. Perspect. 2019, 7, e00505.
N. Dzimiri, U. Fricke, W. Klaus, ‘Influence of derivation on the lipophilicity and inhibitory actions of cardiac glycosides on myocardial Na+-K+-ATPase’, Br. J. Pharmacol. 1987, 91, 31-38.
N. Dzimiri, U. Fricke, ‘Lipophilicity and pharmacodynamics of cardiotonic steroids in guinea-pig isolated heart muscle preparations’, Br. J. Pharmacol. 1988, 93, 281-288.
F. Ebner, A. Bachmaier, G. Schönsteiner, M. Reiter, ‘Diffusion-controlled receptor occupancy determines the rate of inotropic action of some cardioactive steroids’, J. Mol. Cell. Cardiol. 1985, 17, 1115-1126.
A. Carotti, M. de Candia, M. Catto, T. N. Borisova, A. V. Varlamov, E. Méndez-Álvarez, R. Soto-Otero, L. G. Voskressensky, C. Altomare, ‘Ester derivatives of annulated tetrahydroazocines: A new class of selective acetylcholinesterase inhibitors’, Bioorg. Med. Chem. 2006, 14, 7205-7212.
M. Reis, R. J. Ferreira, M. M. M. Santos, D. J. V. A. dos Santos, J. Molnár, M.-J. U Ferreira, ‘Enhancing Macrocyclic Diterpenes as Multidrug-Resistance Reversers: Structure-Activity Studies on Jolkinol D Derivatives’, J. Med. Chem. 2013, 56, 748-760.
E. Rutkowska, K. Pajak, K. Jozwiak, ‘Lipophilicity-methods of determination and its role in medicinal chemistry’, Acta Pol. Pharm. 2013, 70, 3-18.
H. Cai, H. Y. Wang, R. Venkatadri, D. X. Fu, M. Forman, S. O. Bajaj, H. Li, G. A. O′Doherty, R. Arav-Boger, ‘Digitoxin analogs with improved anticytomegalovirus activity’, ACS Med. Chem. Lett. 2014, 5, 395-399.
H. Caohuy, O. Eidelman, T. Chen, S. Liu, Q. Yang, A. Bera, N. I. Walton, T. T. Wang, H. B. Pollard, ‘Common cardiac medications potently inhibit ACE2 binding to the SARS-CoV-2 Spike, and block virus penetration and infectivity in human lung cells’, Sci. Rep. 2021, 11, 22195.
S. Mahajan, S. Choudhary, P. Kumar, S. Tomar, ‘Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens’, Bioorg. Med. Chem. 2021, 46, 116356.
J. M. Calderon-Montano, E. Burgos-Moron, M. Lopez-Lazaro, ‘The in vivo antitumor activity of cardiac glycosides in mice xenografted with human cancer cells is probably an experimental artifact’, Oncogene 2014, 33, 2947-2948.
R. S. Gupta, A. Chopra, D. K. Stetsko, ‘Cellular basis for the species differences in sensitivity to cardiac glycosides (digitalis)’, J. Cell. Physiol. 1986, 127, 197-206.
P. K. Arora, V. M. Patil, S. P. Gupta, ‘A QSAR study on some series of anti-hepatitis B virus (HBV) agents’, Bioinformatics 2010, 4, 417-420.
F. C. Braga, W. Kreis, A. B. Oliveira, ‘Isolation of cardenolides from a Brazilian cultivar of Digitalis lanata by rotation locular counter-current chromatography’, J. Chromatogr. A 1996, 756, 287-291.
F. C. Braga, W. Kreis, R. A. Récio, A. B. de Oliveira, ‘Variation of cardenolides with growth in a Digitalis lanata Brazilian cultivar’, Phytochemistry 1997, 45, 473-476.
R. M. Pádua, A. B. Oliveira, J. D. Souza Filho, G. J. Vieira, J. A. Takahashi, F. C. Braga, ‘Biotransformation of digitoxigenin by Fusarium ciliatum’, J. Braz. Chem. Soc. 2005, 16, 614-619.
U. Stache, K. Radscheit, W. Fritsch, W. Haede, H. Kohl, H. Ruschig, ‘Herstellung von ungesättigten Lactonen der Steroidreihe, VII. Synthese von 4(5)-Dehydro-bufadienoliden’, Justus Liebigs Ann. Chem. 1971, 750, 149-164.
L. Sawlewicz, E. Weiss, H. H. A. Linde, K. Meyer, ‘3α- und 3β-Amino-3-desoxy-digitoxigenin. Partialsynthetische Versuche in der Reihe der Herzgifte, 5. Mitt’, Helv. Chim. Acta 1972, 55, 2452-2460.
R. M. Pádua, R. Waibel, S. P. Kuate, P. K. Schebitz, S. Hahn, P. Gmeiner, W. Kreis, ‘A simple chemical method for synthesizing malonyl hemiesters of 21-hydroxypregnanes, potential intermediates in cardenolide biosynthesis’, Steroids 2008, 73, 458-465.
L. Boff, I. T. Silva, D. F. Argenta, L. M. Farias, L. F. Alvarenga, R. M. Pádua, F. C. Braga, J. P. Leite, J. M. Kratz, C. M. Simões, ‘Strychnos pseudoquina A. St. Hil.: a Brazilian medicinal plant with promising in vitro antiherpes activity’, J. Appl. Microbiol. 2016, 121, 1519-1529.
P. C. Hawkins, A. G. Skillman, G. L. Warren, B. A. Ellingson, M. T. Stahl, ‘Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database’, J. Chem. Inf. Model. 2010, 50, 572-584.
G. C. Veríssimo, E. F. Menezes Dutra, A. L. Teotonio Dias, P. de Oliveira Fernandes, T. Kronenberger, M. A. Gomes, V. G. Maltarollo, ‘HQSAR and random forest-based QSAR models for anti-T. vaginalis activities of nitroimidazoles derivatives’, J. Mol. Graphics Modell. 2019, 90, 180-191.
M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, K. Thiel, B. Wiswedel, ‘KNIME: The Konstanz Information Miner Versin 2.0 and Beyond’, ACM Sigkdd Explorations Newletter 2009, 11, 3-58.
A. C. Gaudio, E. Zandonade, ‘Proposition, validation and analysis of QSAR models’, Quim. Nova 2001, 24, 658-671.
P. Gramatica, A. Sangion, ‘A Historical Excursus on the Statistical Validation Parameters for QSAR Models: A Clarification Concerning Metrics and Terminology’, J. Chem. Inf. Model. 2016, 56, 1127-1131.
C. W. Yap, ‘PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints’, J. Comput. Chem. 2011, 32, 1466-1474.
S. Beisken, T. Meinl, B. Wiswedel, L. F. de Figueiredo, M. Berthold, C. Steinbeck, ‘KNIME-CDK: Workflow-driven cheminformatics’, BMC Bioinf. 2013, 14, 257.
I. V. Tetko, P. Bruneau, ‘Application of ALOGPS to predict 1-octanol/water distribution coefficients, logP, and logD, of AstraZeneca in-house database’, J. Pharm. Sci. 2004, 93, 3103-3110.
I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V. A. Palyulin, E. V. Radchenko, N. S. Zefirov, A. S. Makarenko, V. Y. Tanchuk, V. V. Prokopenko, ‘Virtual computational chemistry laboratory-design and description’, J. Comput.-Aided Mol. Des. 2005, 19, 453-463.
T. I. Oprea, J. Gottfries, ‘Chemography:  The Art of Navigating in Chemical Space’, J. Comb. Chem. 2001, 3, 157-166.

Auteurs

Rodrigo Maia de Pádua (RM)

Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.

Jadel Müller Kratz (JM)

Department of Pharmaceutical Sciences, Center of Health Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, SC, 88037-620, Brazil.

Jennifer Munkert (J)

Division of Pharmaceutical Biology, Friedrich-Alexander Universität, Erlangen - Nürnberg, 91058, Germany.

Jéssica Wildgrube Bertol (JW)

Department of Pharmaceutical Sciences, Center of Health Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, SC, 88037-620, Brazil.

Caroline Rigotto (C)

Department of Pharmaceutical Sciences, Center of Health Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, SC, 88037-620, Brazil.

Daniela Schuster (D)

Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Salzburg, 5020, Austria.

Vinícius Gonçalves Maltarollo (VG)

Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.

Wolfgang Kreis (W)

Division of Pharmaceutical Biology, Friedrich-Alexander Universität, Erlangen - Nürnberg, 91058, Germany.

Cláudia Maria Oliveira Simões (CMO)

Department of Pharmaceutical Sciences, Center of Health Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, SC, 88037-620, Brazil.

Fernão Castro Braga (FC)

Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation
Humans Arthroplasty, Replacement, Hip Male Female Obesity, Morbid

Classifications MeSH