VideoABC: A Real-World Video Dataset for Abductive Visual Reasoning.
Journal
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
ISSN: 1941-0042
Titre abrégé: IEEE Trans Image Process
Pays: United States
ID NLM: 9886191
Informations de publication
Date de publication:
2022
2022
Historique:
pubmed:
15
9
2022
medline:
23
9
2022
entrez:
14
9
2022
Statut:
ppublish
Résumé
In this paper, we investigate the problem of abductive visual reasoning (AVR), which requires vision systems to infer the most plausible explanation for visual observations. Unlike previous work which performs visual reasoning on static images or synthesized scenes, we exploit long-term reasoning from instructional videos that contain a wealth of detailed information about the physical world. We conceptualize two tasks for this emerging and challenging topic. The primary task is AVR, which is based on the initial configuration and desired goal from an instructional video, and the model is expected to figure out what is the most plausible sequence of steps to achieve the goal. In order to avoid trivial solutions based on appearance information rather than reasoning, the second task called AVR++ is constructed, which requires the model to answer why the unselected options are less plausible. We introduce a new dataset called VideoABC, which consists of 46,354 unique steps derived from 11,827 instructional videos, formulated as 13,526 abductive reasoning questions with an average reasoning duration of 51 seconds. Through an adversarial hard hypothesis mining algorithm, non-trivial and high-quality problems are generated efficiently and effectively. To achieve human-level reasoning, we propose a Hierarchical Dual Reasoning Network (HDRNet) to capture the long-term dependencies among steps and observations. We establish a benchmark for abductive visual reasoning, and our method set state-of-the-arts on AVR ( ∼ 74 %) and AVR++ ( ∼ 45 %), and humans can easily achieve over 90% accuracy on these two tasks. The large performance gap reveals the limitation of current video understanding models on temporal reasoning and leaves substantial room for future research on this challenging problem. Our dataset and code are available at https://github.com/wl-zhao/VideoABC.
Identifiants
pubmed: 36103440
doi: 10.1109/TIP.2022.3205207
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM