Fluid-structure interaction analysis of eccentricity and leaflet rigidity on thrombosis biomarkers in bioprosthetic aortic valve replacements.

aortic valve replacement computational biomechanics fluid-structure interaction high performance computing thrombosis

Journal

International journal for numerical methods in biomedical engineering
ISSN: 2040-7947
Titre abrégé: Int J Numer Method Biomed Eng
Pays: England
ID NLM: 101530293

Informations de publication

Date de publication:
12 2022
Historique:
revised: 11 08 2022
received: 01 01 2022
accepted: 04 09 2022
pubmed: 16 9 2022
medline: 15 12 2022
entrez: 15 9 2022
Statut: ppublish

Résumé

This work intends to study the effect of aortic annulus eccentricity and leaflet rigidity on the performance, thrombogenic risk and calcification risk in bioprosthetic aortic valve replacements (BAVRs). To address these questions, a two-way immersed fluid-structure interaction (FSI) computational model was implemented in a high-performance computing (HPC) multi-physics simulation software, and validated against a well-known FSI benchmark. The aortic valve bioprosthesis model is qualitatively contrasted against experimental data, showing good agreement in closed and open states. Regarding the performance of BAVRs, the model predicts that increasing eccentricities yield lower geometric orifice areas (GOAs) and higher normalized transvalvular pressure gradients (TPGs) for healthy cardiac outputs during systole, agreeing with in vitro experiments. Regions with peak values of residence time are observed to grow with eccentricity in the sinus of Valsalva, indicating an elevated risk of thrombus formation for eccentric configurations. In addition, the computational model is used to analyze the effect of varying leaflet rigidity on both performance, thrombogenic and calcification risks with applications to tissue-engineered prostheses. For more rigid leaflets it predicts an increase in systolic and diastolic TPGs, and decrease in systolic GOA, which translates to decreased valve performance. The peak shear rate and residence time regions increase with leaflet rigidity, but their volume-averaged values were not significantly affected. Peak solid stresses are also analyzed, and observed to increase with rigidity, elevating risk of valve calcification and structural failure. To the authors' knowledge this is the first computational FSI model to study the effect of eccentricity or leaflet rigidity on thrombogenic biomarkers, providing a novel tool to aid device manufacturers and clinical practitioners.

Identifiants

pubmed: 36106918
doi: 10.1002/cnm.3649
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e3649

Informations de copyright

© 2022 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.

Références

Carroll J, Mack M, Vemulapalli S, et al. STS-ACC TVT registry of transcatheter aortic valve replacement. J Am Coll Cardiol. 2020;76(21):2492-2516. doi:10.1016/j.jacc.2020.09.595
Vahanian A, Alfieri O, Andreotti F, et al. ESC Committee for Practice Guidelines (CPG); Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC); European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg. 2012;42(4):S1-S44. doi:10.1093/ejcts/ezs455
Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary. Circulation. 2014;129(23):2440-2492. doi:10.1161/CIR.0000000000000029
Chakravarty T, Søndergaard L, Friedman JD, et al. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. Lancet. 2017;389:2383-2392. doi:10.1016/S0140-6736(17)30757-2
Jose J, Sulimov DS, El-Mawardy M, et al. Clinical bioprosthetic heart valve thrombosis after transcatheter aortic valve replacement: incidence, characteristics, and treatment outcomes. J Am Coll Cardiol Intv. 2017;10(7):686-697. doi:10.1016/j.jcin.2017.01.045
Mangione FM, Jatene T, Gonçalves A, et al. Leaflet thrombosis in surgically explanted or post-mortem TAVR valves. JACC Cardiovasc Imaging. 2017;10(1):82-85. doi:10.1016/j.jcmg.2016.11.009
Makkar RR, Fontana G, Jilaihawi H, et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N Engl J Med. 2015;373(21):2015-2024. doi:10.1056/NEJMoa1509233
Makkar RR, Blanke P, Leipsic J, et al. Subclinical leaflet thrombosis in Transcatheter and surgical bioprosthetic valves. J Am Coll Cardiol. 2020;75(24):3003-3015. doi:10.1016/j.jacc.2020.04.043
Lefkowitz JB. In: Kottke-Marchang K, ed. Coagulation pathway and physiology;  2008:3-12.
Davie E, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991;30(43):10363-10370. doi:10.1021/bi00107a001
Cadroy Y, Horbett T, Hanson S. Discrimination between platelet-mediated and coagulation-mediated mechanisms in a model of complex thrombus formation in vivo. J Lab Clin Med. 1989;113(4):436-448.
Casa L, Ku D. Thrombus formation at high shear rates. Annu Rev Biomed Eng. 2017;19(1):415-433. doi:10.1146/annurev-bioeng-071516-044539
Ducci A, Pirisi F, Tzamtzis S, Burriesci G. Transcatheter aortic valves produce unphysiological flows which may contribute to thromboembolic events: an in-vitro study. J Biomech. 2016;49:4080-4089. doi:10.1016/j.jbiomech.2016.10.050
Midha PA, Raghav V, Sharma R, et al. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus. Circulation. 2017;136(17):1598-1609. doi:10.1161/CIRCULATIONAHA.117.029479
Hatoum H, Moore BL, Maureira P, Dollery J, Crestanello J, Dasi LP. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. J Thorac Cardiovasc Surg. 2017;154:32-43. doi:10.1016/j.jtcvs.2017.03.053
Vahidkhah K, Barakat M, Abbasi M, et al. Valve thrombosis following transcatheter aortic valve replacement: significance of blood stasis on the leaflets. Eur J Cardiothorac Surg. 2017;51(5):927-935. doi:10.1093/ejcts/ezw407
Vahidkhah K, Azadani AN. Supra-annular valve-in-valve implantation reduces blood stasis on the transcatheter aortic valve leaflets. J Biomech. 2017;58:114-122. doi:10.1016/j.jbiomech.2017.04.020
Hellums JD. 1993 Whitaker lecture: biorheology in thrombosis research. Ann Biomed Eng. 2006;22:445-455. doi:10.1007/BF02367081
Casa LD, Deaton DH, Ku DN. Role of high shear rate in thrombosis. J Vasc Surg. 2015;61(4):1068-1080. doi:10.1016/j.jvs.2014.12.050
Long CC, Esmaily-Moghadam M, Marsden AL, Bazilevs Y. Computation of residence time in the simulation of pulsatile ventricular assist devices. Comput Mech. 2014;54(4):911-919. doi:10.1007/s00466-013-0931-y
Rossini L, Martinez-Legazpi P, Vu V, et al. A clinical method for mapping and quantifying blood stasis in the left ventricle. J Biomech. 2016;49(11):2152-2161. Selected Articles from the International Conference on CFD in Medicine and Biology (Albufeira, Portugal-August 30th-September 4th, 2015). doi:10.1016/j.jbiomech.2015.11.049
Reza MMS, Arzani A. A critical comparison of different residence time measures in aneurysms. J Biomech. 2019;88:122-129. doi:10.1016/j.jbiomech.2019.03.028
Plitman Mayo R, Yaakobovich H, Finkelstein A, Shadden SC, Marom G. Numerical models for assessing the risk of leaflet thrombosis post-transcatheter aortic valve-in-valve implantation. R Soc Open Sci. 2020;7(12):201838. doi:10.1098/rsos.201838
Zhu G, Ismail MB, Nakao M, Yuan Q, Yeo JH. Numerical and in-vitro experimental assessment of the performance of a novel designed expanded-polytetrafluoroethylene stentless bi-leaflet valve for aortic valve replacement. PLOS One. 2019;14(1):1-27. doi:10.1371/journal.pone.0210780
Deiwick M, Glasmacher B, Baba H, et al. In vitro testing of bioprostheses: influence of mechanical stresses and lipids on calcification. Ann Thorac Surg. 1983;66:206-211. doi:10.1016/s0003-4975(98)01125-4
Thubrikar MJ, Deck JD, Aouad J, Nolan SP. Role of mechanical stress in calcification of aortic bioprosthetic valves. J Thorac Cardiovasc Surg. 1983;86(1):115-125. doi:10.1016/S0022-5223(19)39217-7
Gunning PS, Saikrishnan N, Yoganathan AP, McNamara LM. Total ellipse of the heart valve: the impact of eccentric stent distortion on the regional dynamic deformation of pericardial tissue leaflets of a transcatheter aortic valve replacement. J Royal Soc Interface. 2015;12(113):737. doi:10.1098/rsif.2015.0737
Doddamani S, Grushko M, Aea M. Demonstration of left ventricular outflow tract eccentricity by 64-slice multidetector CT. Int J Cardiovasc Imaging. 2009;25:175-181. doi:10.1007/s10554-008-9362-9
Schultz C, Weustink A, Piazza N, et al. Geometry and degree of apposition of the CoreValve ReValving system with multislice computed tomography after implantation in patients with aortic stenosis. J Am Coll Cardiol. 2009;54(10):911-918. doi:10.1016/j.jacc.2009.04.075
Zegdi R, Ciobotaru V, Noghin M, et al. Is it reasonable to treat all calcified stenotic aortic valves with a valved stent? Results from a human anatomic study in adults. J Am Coll Cardiol. 2008;51(5):579-584. doi:10.1016/j.jacc.2007.10.023
Zegdi R, Lecuyer L, Achouh P, et al. Increased radial force improves stent deployment in tricuspid but not in bicuspid stenotic native aortic valves. Ann Thorac Surg. 2010;89(3):768-772. doi:10.1016/j.athoracsur.2009.12.022
Wong D, Bertaso A, Liew G, et al. Relationship of aortic annular eccentricity and paravalvular regurgitation post transcatheter aortic valve implantation with CoreValve. J Invasive Cardiol. 2013;25(4):190-195.
Kuetting M, Sedaghat A, Utzenrath M, et al. In vitro assessment of the influence of aortic annulus ovality on the hydrodynamic performance of self-expanding transcatheter heart valve prostheses. J Biomech. 2014;47(5):957-965. doi:10.1016/j.jbiomech.2014.01.024
Thubrikar M, Piepgrass WC, Shaner TW, Nolan SP. The design of the normal aortic valve. Am J Physiol Heart Circulat Physiol. 1981;241(6):H795-H801. doi:10.1152/ajpheart.1981.241.6.H795
Salaun E, Zenses AS, Evin M, et al. Effect of oversizing and elliptical shape of aortic annulus on transcatheter valve hemodynamics: an in vitro study. Int J Cardiol. 2016;208:28-35. doi:10.1016/j.ijcard.2016.01.048
SunW LK, Sirois E. Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J Biomech. 2010;43(16):3085-3090. doi:10.1016/j.jbiomech.2010.08.010
Finotello A, Morganti S, Auricchio F. Finite element analysis of TAVI: impact of native aortic root computational modeling strategies on simulation outcomes. Med Eng Phys. 2017;47:2-12. doi:10.1016/j.medengphy.2017.06.045
Sirois E, Mao W, Li K, Calderan J, Sun W. Simulated Transcatheter aortic valve flow: implications of elliptical deployment and under-expansion at the aortic annulus. Artif Organs. 2018;42(7):E141-E152. doi:10.1111/aor.13107
Viceconti M, Pappalardo F, Rodriguez B, Horner M, Bischoff J. Musuamba Tshinanu F. in silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods Simul Biomed. 2021;185:120-127. doi:10.1016/j.ymeth.2020.01.011
Assessing credibility of computational modeling through verification and validation: application to medical devices. Standard, ASME; 2018.
Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. Springer Berlin Heidelberg; 2006:371-385.
Cardiovascular Implants-Cardiac Valve Prostheses-Part 3: Heart Valve Substitutes Implanted by Transcatheter Techniques-ISO 5840-3:2013(E). standard, International Organization for Standardization; Geneva, CH: 2013.
Sigüenza J, Pott D, Mendez S, et al. Fluid-structure interaction of a pulsatile flow with an aortic valve model: a combined experimental and numerical study. Int J Numer Methods Biomed Eng. 2018;34(4):e2945. doi:10.1002/cnm.2945
Sochi T. Non-Newtonian rheology in blood circulation. arXiv: Fluid Dynamics; 2013. Accessed November 10, 2021.
Codina R. Pressure stability in fractional step finite element methods for incompressible flows. J Comput Phys. 2001;170(1):112-140. doi:10.1006/jcph.2001.6725
Lehmkuhl O, Houzeaux G, Owen H, Chrysokentis G, Rodriguez I. A low-dissipation finite element scheme for scale resolving simulations of turbulent flows. J Comput Phys. 2019;390:51-65. doi:10.1016/j.jcp.2019.04.004
Billiar KLSM. Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: part II-A structural constitutive model. J Biomech Eng. 2000;122(4):23-30. doi:10.1115/1.3127261
May-Newman K, Lam C, Yin FCP. A Hyperelastic constitutive law for aortic valve tissue. J Biomech Eng. 2009;131(8):81009. doi:10.1115/1.3127261
Donea J, Huerta A, Ponthot JP, Rodriguez-Ferran A. Arbitrary lagrangian-eulerian methods. In Stein E, Borst R, Hughes TJR, eds. Encyclopedia of Computational Mechanics. Wiley; 2004. https://doi.org/10.1002/0470091355.ecm009
Peskin CS. Flow patterns around heart valves: a numerical method. J Comput Phys. 1972;10(2):252-271. doi:10.1016/0021-9991(72)90065-4
Wang X, Zhang L. Interpolation functions in the immersed boundary and finite element methods. Computat Mech. 2010;45:321-334. doi:10.1007/s00466-009-0449-5
Vázquez M, Houzeaux G, Koric S, et al. Alya: Multiphysics engineering simulation toward exascale. J Computat Sci. 2016;14:15-27. doi:10.1016/j.jocs.2015.12.007
Mira D, Zavala-Ake M, Mea A. Heat transfer effects on a fully premixed methane impinging flame. Flow Turbulence Combust. 2016;97:339-336. doi:10.1007/s10494-015-9694-1
Calmet H, Gambaruto AM, Bates AJ, Vázquez M, Houzeaux G, Doorly DJ. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput Biol Med. 2016;69:166-180. doi:10.1016/j.compbiomed.2015.12.003
Gövert S, Mira D, Zavala-Ake M, Kok J, Vázquez M, Houzeaux G. Heat loss prediction of a confined premixed jet flame using a conjugate heat transfer approach. Int J Heat Mass Transfer. 2017;107:882-894. doi:10.1016/j.ijheatmasstransfer.2016.10.122
Rodriguez I, Lehmkuhl O, Soria M, Gómez S, Domínguez-Pumar M, Kowalski L. Fluid dynamics and heat transfer in the wake of a sphere. Int J Heat Fluid Flow. 2019;76:141-153. doi:10.1016/j.ijheatfluidflow.2019.02.004
Santiago A, Zavala-Aké M, Borell R, Houzeaux G, Vázquez M. HPC compact quasi-Newton algorithm for interface problems. J Fluids Struct. 2020;96:103009. doi:10.1016/j.jfluidstructs.2020.103009
Oyarzun G, Mira D, Houzeaux G. Performance assessment of CUDA and open ACC in large scale combustion simulations. 2021. Accessed December 22, 2021.
ZMG Inc. Zygote solid 3D heart generation II development report; 2014.
BETA CAE Systems. ANSA pre-processor 21.1.3. 2021. https://www.beta-cae.com/ansa.htm.
Rayz V, Boussel L, Ge L, et al. Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann Biomed Eng. 2010;38(10):3058-3069. doi:10.1007/s10439-010-0065-8
Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;25(26):5681-5703. doi:10.1016/j.biomaterials.2004.01.023
Rukhlenko OS, Dudchenko OA, Zlobina KE, Guria GT. Mathematical modeling of intravascular blood coagulation under wall shear stress. PLOS One. 2015;10(7):1-16. doi:10.1371/journal.pone.0134028
Dunne T, Rannacher R. Adaptive finite element approximation of fluid-structure interaction based on an Eulerian variational formulation. In: Bungartz HJ, Schäfer M, eds. Fluid-Structure Interaction. Springer Berlin Heidelberg; 2006:110-145.
Heil M, Hazel AL, Boyle J. Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches. Computat Mech. 2008;43:91-101. doi:10.1007/s00466-008-0270-6
Sun X, Steve Suh C, Sun C, Yu B. Vortex-induced vibration of a flexible splitter plate attached to a square cylinder in laminar flow. J Fluids Struct. 2021;101:103206. doi:10.1016/j.jfluidstructs.2020.103206
Breuer M, De Nayer G, Münsch M, Gallinger T, Wüchner R. Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation. J Fluids Struct. 2012;29:107-130. doi:10.1016/j.jfluidstructs.2011.09.003
Bhardwaj R, Mittal R. Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation. AIAA J. 2012;50:1638-1642. doi:10.2514/1.J051621
Tian FB, Dai H, Luo H, Doyle JF, Rousseau B. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems. J Comput Phys. 2014;258:451-469. doi:10.1016/j.jcp.2013.10.047
GriffithB E, Luo X. Hybrid finite difference/finite element immersed boundary method. Int J Numer Methods Biomed Eng. 2017;33(12):e2888. doi:10.1002/cnm.2888
Gallinger TG. Effiziente Algorithmen zur partitionierten Lösung stark gekoppelter Probleme der Fluid-Struktur- Wechselwirkung. Dissertation Technische Universität München, München; 2010.
Bungartz HJ, Schäfer M. Fluid-Structure Interaction: Modelling, Simulation, Optimisation. Springer; 2006.
Cajas García J, Houzeaux G, Vázquez M, et al. Fluid-structure interaction based on HPC multicode coupling. SIAM J Sci Comput. 2018;40:C677-C703. doi:10.1137/17M1138868
Turek S, Hron J, Razzaq M, Wobker H, Schäfer M. Numerical benchmarking of fluid-structure interaction: a comparison of different discretization and solution approaches. In: Bungartz HJ, Mehl M, Schäfer M, eds. Fluid Structure Interaction II. Springer Berlin Heidelberg; 2010:413-424.
Ojeda HRD. Computational and experimental study of the influence of the free surface on rigid and deformable submerged structures, Dissertation, 2019; 28, 2021.
Roache PJ. Quantification of uncertainty in computational fluid dynamics. Annu Rev Fluid Mech. 1997;29(1):123-160. doi:10.1146/annurev.fluid.29.1.123
Westerhof N, Lankhaar J, Westerhof B. The arterial Windkessel. Med Biol Eng Comput. 2009;47:131-141. doi:10.1007/s11517-008-0359-2
Lindman B, Clavel MA, Mathieu P, et al. Calcific aortic stenosis. Nat Rev Dis Primers. 2016;2:16006. doi:10.1038/nrdp.2016.6
De Marchena E, Mesa J, Pomenti S, et al. Thrombus formation following transcatheter aortic valve replacement. JACC: Cardiovascul Intervent. 2015;8(5):728-739. doi:10.1016/j.jcin.2015.03.005
De Nayer G, Breuer M. Numerical FSI investigation based on LES: flow past a cylinder with a flexible splitter plate involving large deformations (FSI-PfS-2a). Int J Heat Fluid Flow. 2014;50:300-315. doi:10.1016/j.ijheatfluidflow.2014.08.013
Santiago A, Butakoff C, Eguzkitza B, et al. Design and execution of a verification, validation, and uncertainty quantification plan for a numerical model of left ventricular flow after LVAD implantation. PLoS Comput Biol. 2022;18:e1010141. doi:10.1371/journal.pcbi.1010141
Santiago A, Aguado-Sierra J, Miguel ZA, et al. Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. Int J Numer Meth Biomed Eng. 2018;34:3140. doi:10.1002/cnm.3140
Aguado-Sierra J, Butakoff C, Brigham R, et al. In-silico clinical trial using high performance computational modeling of a virtual human cardiac population to assess drug-induced arrhythmic risk. medRxiv; 2021. doi: 10.1101/2021.04.21.21255870

Auteurs

David Oks (D)

Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain.

Cristóbal Samaniego (C)

Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain.

Guillaume Houzeaux (G)

Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain.

Constantine Butakoff (C)

ELEM Biotech SL, Barcelona, Spain.

Mariano Vázquez (M)

Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain.
ELEM Biotech SL, Barcelona, Spain.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH