Description and Outcome of Severe Hypoglycemic Encephalopathy in the Intensive Care Unit.
Clinical outcome
Disorder of consciousness
Electroencephalography
Hypoglycemic encephalopathy
Intensive care unit
Magnetic resonance imaging
Journal
Neurocritical care
ISSN: 1556-0961
Titre abrégé: Neurocrit Care
Pays: United States
ID NLM: 101156086
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
27
04
2022
accepted:
18
08
2022
medline:
13
4
2023
pubmed:
16
9
2022
entrez:
15
9
2022
Statut:
ppublish
Résumé
Disorders of consciousness due to severe hypoglycemia are rare but challenging to treat. The aim of this retrospective cohort study was to describe our multimodal neurological assessment of patients with hypoglycemic encephalopathy hospitalized in the intensive care unit and their neurological outcomes. Consecutive patients with disorders of consciousness related to hypoglycemia admitted for neuroprognostication from 2010 to 2020 were included. Multimodal neurological assessment included electroencephalography, somatosensory and cognitive event-related potentials, and morphological and quantitative magnetic resonance imaging (MRI) with quantification of fractional anisotropy. Neurological outcomes at 28 days, 3 months, 6 months, 1 year, and 2 years after hypoglycemia were retrieved. Twenty patients were included. After 2 years, 75% of patients had died, 5% remained in a permanent vegetative state, 10% were in a minimally conscious state, and 10% were conscious but with severe disabilities (Glasgow Outcome Scale-Extended scores 3 and 4). All patients showed pathologic electroencephalography findings with heterogenous patterns. Morphological brain MRI revealed abnormalities in 95% of patients, with various localizations including cortical atrophy in 65% of patients. When performed, quantitative MRI showed decreased fractional anisotropy affecting widespread white matter tracts in all patients. The overall prognosis of patients with severe hypoglycemic encephalopathy was poor, with only a small fraction of patients who slowly improved after intensive care unit discharge. Of note, patients who did not improve during the first 6 months did not recover consciousness. This study suggests that a multimodal approach capitalizing on advanced brain imaging and bedside electrophysiology techniques could improve diagnostic and prognostic performance in severe hypoglycemic encephalopathy.
Sections du résumé
BACKGROUND
Disorders of consciousness due to severe hypoglycemia are rare but challenging to treat. The aim of this retrospective cohort study was to describe our multimodal neurological assessment of patients with hypoglycemic encephalopathy hospitalized in the intensive care unit and their neurological outcomes.
METHODS
Consecutive patients with disorders of consciousness related to hypoglycemia admitted for neuroprognostication from 2010 to 2020 were included. Multimodal neurological assessment included electroencephalography, somatosensory and cognitive event-related potentials, and morphological and quantitative magnetic resonance imaging (MRI) with quantification of fractional anisotropy. Neurological outcomes at 28 days, 3 months, 6 months, 1 year, and 2 years after hypoglycemia were retrieved.
RESULTS
Twenty patients were included. After 2 years, 75% of patients had died, 5% remained in a permanent vegetative state, 10% were in a minimally conscious state, and 10% were conscious but with severe disabilities (Glasgow Outcome Scale-Extended scores 3 and 4). All patients showed pathologic electroencephalography findings with heterogenous patterns. Morphological brain MRI revealed abnormalities in 95% of patients, with various localizations including cortical atrophy in 65% of patients. When performed, quantitative MRI showed decreased fractional anisotropy affecting widespread white matter tracts in all patients.
CONCLUSIONS
The overall prognosis of patients with severe hypoglycemic encephalopathy was poor, with only a small fraction of patients who slowly improved after intensive care unit discharge. Of note, patients who did not improve during the first 6 months did not recover consciousness. This study suggests that a multimodal approach capitalizing on advanced brain imaging and bedside electrophysiology techniques could improve diagnostic and prognostic performance in severe hypoglycemic encephalopathy.
Identifiants
pubmed: 36109449
doi: 10.1007/s12028-022-01594-0
pii: 10.1007/s12028-022-01594-0
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
365-377Informations de copyright
© 2022. Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society.
Références
Butterworth RF (1999) Hypoglycemic Encephalopathy. Basic Neurochem Mol Cell Med Asp 6th Ed
Barbara G, Mégarbane B, Argaud L, et al. Functional outcome of patients with prolonged hypoglycemic encephalopathy. Ann Intensive Care. 2017. https://doi.org/10.1186/s13613-017-0277-2 .
doi: 10.1186/s13613-017-0277-2
pubmed: 28534234
pmcid: 5440422
Witsch J, Neugebauer H, Flechsenhar J, Jüttler E. Hypoglycemic encephalopathy: a case series and literature review on outcome determination. J Neurol. 2012;259:2172–81. https://doi.org/10.1007/s00415-012-6480-z .
doi: 10.1007/s00415-012-6480-z
pubmed: 22491856
Ikeda T, Takahashi T, Sato A, et al. Predictors of outcome in hypoglycemic encephalopathy. Diabetes Res Clin Pract. 2013;101:159–63. https://doi.org/10.1016/j.diabres.2013.05.007 .
doi: 10.1016/j.diabres.2013.05.007
pubmed: 23820485
Ma J-H, Kim Y-J, Yoo W-J, et al. MR imaging of hypoglycemic encephalopathy: lesion distribution and prognosis prediction by diffusion-weighted imaging. Neuroradiology. 2009;51:641–9. https://doi.org/10.1007/s00234-009-0544-5 .
doi: 10.1007/s00234-009-0544-5
pubmed: 19533113
Gugger JJ, Geocadin RG, Kaplan PW. A multimodal approach using somatosensory evoked potentials for prognostication in hypoglycemic encephalopathy. Clin Neurophysiol Pract. 2019;4:194–7. https://doi.org/10.1016/j.cnp.2019.09.001 .
doi: 10.1016/j.cnp.2019.09.001
pubmed: 31886445
pmcid: 6921239
Auer RN, Siesjö BK. Biological differences between ischemia, hypoglycemia, and epilepsy. Ann Neurol. 1988;24:699–707. https://doi.org/10.1002/ana.410240602 .
doi: 10.1002/ana.410240602
pubmed: 3061362
Fujioka M, Okuchi K, Hiramatsu KI, et al. Specific changes in human brain after hypoglycemic injury. Stroke. 1997;28:584–7. https://doi.org/10.1161/01.str.28.3.584 .
doi: 10.1161/01.str.28.3.584
pubmed: 9056615
Kondziella D, Bender A, Diserens K, et al. European academy of neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020;27:741–56. https://doi.org/10.1111/ene.14151 .
doi: 10.1111/ene.14151
pubmed: 32090418
Claassen J, Akbari Y, Alexander S, et al. Proceedings of the first curing coma campaign NIH symposium: challenging the future of research for coma and disorders of consciousness. Neurocrit Care. 2021;35:4–23. https://doi.org/10.1007/s12028-021-01260-x .
doi: 10.1007/s12028-021-01260-x
pubmed: 34236619
pmcid: 8264966
Sitt JD, King J-R, El Karoui I, et al. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain. 2014;137:2258–70. https://doi.org/10.1093/brain/awu141 .
doi: 10.1093/brain/awu141
pubmed: 24919971
pmcid: 4610185
Comanducci A, Boly M, Claassen J, et al. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2020;131:2736–65. https://doi.org/10.1016/j.clinph.2020.07.015 .
doi: 10.1016/j.clinph.2020.07.015
Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the authors or upon any organization with which the authors are associated. Arch Phys Med Rehabil. 2004;85:2020–9. https://doi.org/10.1016/j.apmr.2004.02.033 .
doi: 10.1016/j.apmr.2004.02.033
pubmed: 15605342
Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63. https://doi.org/10.1001/jama.270.24.2957 .
doi: 10.1001/jama.270.24.2957
pubmed: 8254858
Synek VM. Prognostically important EEG coma patterns in diffuse anoxic and traumatic encephalopathies in adults. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc. 1988;5:161–74. https://doi.org/10.1097/00004691-198804000-00003 .
doi: 10.1097/00004691-198804000-00003
André-Obadia N, Zyss J, Gavaret M, et al. Recommendations for the use of electroencephalography and evoked potentials in comatose patients. Neurophysiol Clin. 2018;48:143–69. https://doi.org/10.1016/j.neucli.2018.05.038 .
doi: 10.1016/j.neucli.2018.05.038
pubmed: 29784540
Cruccu G, Aminoff MJ, Curio G, et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol. 2008;119:1705–19. https://doi.org/10.1016/j.clinph.2008.03.016 .
doi: 10.1016/j.clinph.2008.03.016
pubmed: 18486546
Bekinschtein TA, Dehaene S, Rohaut B, et al. Neural signature of the conscious processing of auditory regularities. Proc Natl Acad Sci U S A. 2009;106:1672–7. https://doi.org/10.1073/pnas.0809667106 .
doi: 10.1073/pnas.0809667106
pubmed: 19164526
pmcid: 2635770
Hermann B, Raimondo F, Hirsch L, et al. Combined behavioral and electrophysiological evidence for a direct cortical effect of prefrontal tDCS on disorders of consciousness. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-61180-2 .
doi: 10.1038/s41598-020-61180-2
pubmed: 33303843
pmcid: 7730196
Velly L, Perlbarg V, Boulier T, et al. Use of brain diffusion tensor imaging for the prediction of long-term neurological outcomes in patients after cardiac arrest: a multicentre, international, prospective, observational, cohort study. Lancet Neurol. 2018;17:317–26. https://doi.org/10.1016/S1474-4422(18)30027-9 .
doi: 10.1016/S1474-4422(18)30027-9
pubmed: 29500154
Bouyaknouden D, Peddada TN, Ravishankar N, et al. Neurological prognostication after hypoglycemic coma: role of clinical and EEG findings. Neurocrit Care. 2022. https://doi.org/10.1007/s12028-022-01495-2 .
doi: 10.1007/s12028-022-01495-2
pubmed: 35437670
Tong JT, Eyngorn I, Mlynash M, et al. Functional neurologic outcomes change over the first six months after cardiac arrest. Crit Care Med. 2016;44:e1202–7. https://doi.org/10.1097/CCM.0000000000001963 .
doi: 10.1097/CCM.0000000000001963
pubmed: 27495816
pmcid: 5115936
Nolan JP, Sandroni C, Böttiger BW, et al. European resuscitation council and European society of intensive care medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021. https://doi.org/10.1007/s00134-021-06368-4 .
doi: 10.1007/s00134-021-06368-4
pubmed: 34545439
pmcid: 7993077
Kim Y-J, Ahn S, Sohn CH, et al. Long-term neurological outcomes in patients after out-of-hospital cardiac arrest. Resuscitation. 2016;101:1–5. https://doi.org/10.1016/j.resuscitation.2016.01.004 .
doi: 10.1016/j.resuscitation.2016.01.004
pubmed: 26826564
Geocadin RG, Callaway CW, Fink EL, et al. Standards for studies of neurological prognostication in comatose survivors of cardiac arrest: a scientific statement from the American heart association. Circulation. 2019;140:e517–42. https://doi.org/10.1161/CIR.0000000000000702 .
doi: 10.1161/CIR.0000000000000702
pubmed: 31291775
Petzinka VN, Endisch C, Streitberger KJ, et al. Unresponsive wakefulness or coma after cardiac arrest-a long-term follow-up study. Resuscitation. 2018;131:121–7. https://doi.org/10.1016/j.resuscitation.2018.07.007 .
doi: 10.1016/j.resuscitation.2018.07.007
pubmed: 29990580
Blaabjerg L, Juhl CB. Hypoglycemia-induced changes in the electroencephalogram. J Diabetes Sci Technol. 2016;10:1259–67. https://doi.org/10.1177/1932296816659744 .
doi: 10.1177/1932296816659744
pubmed: 27464753
pmcid: 5094337
Kim JH, Choi JY, Koh S-B, Lee Y. Reversible splenial abnormality in hypoglycemic encephalopathy. Neuroradiology. 2007;49:217–22. https://doi.org/10.1007/s00234-006-0184-y .
doi: 10.1007/s00234-006-0184-y
pubmed: 17136534
Agardh C-D, Rosén I, Ryding E. Persistent vegetative state with high cerebral blood flow following profound hypoglycemia. Ann Neurol. 1983;14:482–6. https://doi.org/10.1002/ana.410140414 .
doi: 10.1002/ana.410140414
pubmed: 6638960
Young GB, Doig G, Ragazzoni A. Anoxic-ischemic encephalopathy. Neurocrit Care. 2005;2:159–64. https://doi.org/10.1385/NCC:2:2:159 .
doi: 10.1385/NCC:2:2:159
pubmed: 16159058
Daltrozzo J, Wioland N, Mutschler V, Kotchoubey B. Predicting coma and other low responsive patients outcome using event-related brain potentials: a meta-analysis. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2007;118:606–14. https://doi.org/10.1016/j.clinph.2006.11.019 .
doi: 10.1016/j.clinph.2006.11.019
Wijdicks EFM, Hijdra A, Young GB, et al. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the quality standards subcommittee of the American academy of neurology. Neurology. 2006;67:203–10. https://doi.org/10.1212/01.wnl.0000227183.21314.cd .
doi: 10.1212/01.wnl.0000227183.21314.cd
pubmed: 16864809
Zandbergen EG, de Haan RJ, Stoutenbeek CP, et al. Systematic review of early prediction of poor outcome in anoxicischaemic coma. The Lancet. 1998;352:1808–12. https://doi.org/10.1016/S0140-6736(98)04076-8 .
doi: 10.1016/S0140-6736(98)04076-8
Appoloni O, Mavroudakis N, Sadis C, Vincent J-L. Reversible hypoglycemic coma despite bilateral absence of the median nerve N20 evoked potential. Neurology. 2003;60:1723–4. https://doi.org/10.1212/01.wnl.0000061485.57859.2f .
doi: 10.1212/01.wnl.0000061485.57859.2f
pubmed: 12771284
Perez P, Valente M, Hermann B, et al. Auditory event-related “global effect” predicts recovery of overt consciousness. Front Neurol. 2020;11: 588233. https://doi.org/10.3389/fneur.2020.588233 .
doi: 10.3389/fneur.2020.588233
pubmed: 33488494
Engemann DA, Raimondo F, King J-R, et al. Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain J Neurol. 2018;141:3179–92. https://doi.org/10.1093/brain/awy251 .
doi: 10.1093/brain/awy251
Kang EG, Jeon SJ, Choi SS, et al. Diffusion MR imaging of hypoglycemic encephalopathy. Am J Neuroradiol. 2010;31:559–64. https://doi.org/10.3174/ajnr.A1856 .
doi: 10.3174/ajnr.A1856
pubmed: 19875472
pmcid: 7963995
Johkura K, Nakae Y, Kudo Y, et al. Early diffusion MR imaging findings and short-term outcome in comatose patients with hypoglycemia. AJNR Am J Neuroradiol. 2012;33:904–9. https://doi.org/10.3174/ajnr.A2903 .
doi: 10.3174/ajnr.A2903
pubmed: 22268090
pmcid: 7968806
Kim JH, Koh S-B. Extensive white matter injury in hypoglycemic coma. Neurology. 2007;68:1074. https://doi.org/10.1212/01.wnl.0000258546.83251.36 .
doi: 10.1212/01.wnl.0000258546.83251.36
pubmed: 17389314
Lee B-W, Jin ES, Hwang H-S, et al. A case of hypoglycemic brain injuries with cortical laminar necrosis. J Korean Med Sci. 2010;25:961–5. https://doi.org/10.3346/jkms.2010.25.6.961 .
doi: 10.3346/jkms.2010.25.6.961
pubmed: 20514323
pmcid: 2877241
Lee S-H, Kang CD, Kim SS, et al. Lateralization of hypoglycemic encephalopathy: evidence of a mechanism of selective vulnerability. J Clin Neurol Seoul Korea. 2010;6:104–8. https://doi.org/10.3988/jcn.2010.6.2.104 .
doi: 10.3988/jcn.2010.6.2.104
Masayuki F, Kazuo O, Ken-Ichiro H, et al. Specific changes in human brain after hypoglycemic injury. Stroke. 1997;28:584–7. https://doi.org/10.1161/01.STR.28.3.584 .
doi: 10.1161/01.STR.28.3.584
Languren G, Montiel T, Julio-Amilpas A, Massieu L. Neuronal damage and cognitive impairment associated with hypoglycemia: an integrated view. Neurochem Int. 2013;63:331–43. https://doi.org/10.1016/j.neuint.2013.06.018 .
doi: 10.1016/j.neuint.2013.06.018
pubmed: 23876631
Naccache L, Luauté J, Silva S, et al. Toward a coherent structuration of disorders of consciousness expertise at a country scale: a proposal for France. Rev Neurol (Paris). 2022;178:9–20. https://doi.org/10.1016/j.neurol.2021.12.004 .
doi: 10.1016/j.neurol.2021.12.004
pubmed: 34980510
Chen XW, Shafei MN, Abdullah JM, Musa KI. Reliability of telephone interview for assessment of long-term stroke outcomes: Evidence from interrater analysis. Neuroepidemiology. 2019;52(3–4):214–9.
doi: 10.1159/000497238
pubmed: 30799411
Estraneo A, Loreto V, Masotta O, Pascarella A, Trojano L. Do medical complications impact long-term outcomes in prolonged disorders of consciousness? Arch Phys Med Rehabil. 2018;99(12):2523–31.e3.
Formisano R, D’Ippolito M, Risetti M, Riccio A, Caravasso CF, Catani S, et al. Vegetative state, minimally conscious state, akinetic mutism and Parkinsonism as a continuum of recovery from disorders of consciousness: an exploratory and preliminary study. Funct Neurol. 2011;26(1):15–24.
pubmed: 21693084
pmcid: 3814507
Moretta P, Trojano L, Masotta O, Cardinale V, Loreto V, Estraneo A. Family caregivers’ opinions aboutinteraction with the environment in consciousness disorders. Rehabil Psychol. 2017;62(2):208–13.
doi: 10.1037/rep0000144
pubmed: 28569534
Løvstad M, Frøslie KF, Giacino JT, Skandsen T, Anke A, Schanke AK. Reliability and diagnostic characteristics of the JFK coma recovery scale-revised: exploring the influence of rater’s level of experience. J Head Trauma Rehabil. 2010;25(5):349–56.
doi: 10.1097/HTR.0b013e3181cec841
pubmed: 20142758