Drivers and determinants of strain dynamics following fecal microbiota transplantation.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
09 2022
Historique:
received: 05 10 2021
accepted: 23 06 2022
pubmed: 16 9 2022
medline: 28 9 2022
entrez: 15 9 2022
Statut: ppublish

Résumé

Fecal microbiota transplantation (FMT) is a therapeutic intervention for inflammatory diseases of the gastrointestinal tract, but its clinical mode of action and subsequent microbiome dynamics remain poorly understood. Here we analyzed metagenomes from 316 FMTs, sampled pre and post intervention, for the treatment of ten different disease indications. We quantified strain-level dynamics of 1,089 microbial species, complemented by 47,548 newly constructed metagenome-assembled genomes. Donor strain colonization and recipient strain resilience were mostly independent of clinical outcomes, but accurately predictable using LASSO-regularized regression models that accounted for host, microbiome and procedural variables. Recipient factors and donor-recipient complementarity, encompassing entire microbial communities to individual strains, were the main determinants of strain population dynamics, providing insights into the underlying processes that shape the post-FMT gut microbiome. Applying an ecology-based framework to our findings indicated parameters that may inform the development of more effective, targeted microbiome therapies in the future, and suggested how patient stratification can be used to enhance donor microbiota colonization or the displacement of recipient microbes in clinical practice.

Identifiants

pubmed: 36109636
doi: 10.1038/s41591-022-01913-0
pii: 10.1038/s41591-022-01913-0
pmc: PMC9499871
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1902-1912

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. The Author(s).

Références

Borody, T. J. et al. Bacteriotherapy using fecal flora: toying with human motions. J. Clin. Gastroenterol. 38, 475–483 (2004).
pubmed: 15220681 doi: 10.1097/01.mcg.0000128988.13808.dc
Rossen, N. G. et al. Fecal microbiota transplantation as novel therapy in gastroenterology: a systematic review. World J. Gastroenterol. 21, 5359–5371 (2015).
pubmed: 25954111 pmcid: 4419078 doi: 10.3748/wjg.v21.i17.5359
Hanssen, N. M. J., de Vos, W. M. & Nieuwdorp, M. Fecal microbiota transplantation in human metabolic diseases: from a murky past to a bright future? Cell Metab. 33, 1098–1110 (2021).
pubmed: 34077717 doi: 10.1016/j.cmet.2021.05.005
Gough, E., Shaikh, H. & Manges, A. R. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin. Infect. Dis. 53, 994–1002 (2011).
pubmed: 22002980 doi: 10.1093/cid/cir632
van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).
pubmed: 23323867 doi: 10.1056/NEJMoa1205037
Narula, N. et al. Systematic review and meta-analysis fecal microbiota transplantation for treatment of active ulcerative colitis. Inflamm. Bowel Dis. 23, 1702–1709 (2017).
pubmed: 28906291 doi: 10.1097/MIB.0000000000001228
Haifer, C., Leong, R. W. & Paramsothy, S. The role of fecal microbiota transplantation in the treatment of inflammatory bowel disease. Curr. Opin. Pharmacol. 55, 8–16 (2020).
pubmed: 33035780 pmcid: 7538387 doi: 10.1016/j.coph.2020.08.009
Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423 (2018).
pubmed: 30193113 doi: 10.1016/j.cell.2018.08.047
Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).
Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).
pubmed: 33542131 pmcid: 8097968 doi: 10.1126/science.abf3363
Burrello, C. et al. Therapeutic fecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat. Commun. 9, 5184 (2018).
pubmed: 30518790 pmcid: 6281577 doi: 10.1038/s41467-018-07359-8
Seekatz, A. M. et al. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe 53, 64–73 (2018).
pubmed: 29654837 pmcid: 6185828 doi: 10.1016/j.anaerobe.2018.04.001
Zuo, T. et al. Bacteriophage transfer during fecal microbiota transplantation is associated with treatment response in Clostridium difficile infection. Gastroenterology 152, S140–S141 (2017).
doi: 10.1016/S0016-5085(17)30798-9
Manrique, P. et al. Gut bacteriophage dynamics during fecal microbial transplantation in subjects with metabolic syndrome. Gut Microbes 13, 1–15 (2021).
pubmed: 33794724 doi: 10.1080/19490976.2021.1897217
Wilson, B. C., Vatanen, T., Cutfield, W. S. & O’Sullivan, J. M. The super-donor phenomenon in fecal microbiota transplantation. Front. Cell. Infect. Microbiol. 9, 2 (2019).
pubmed: 30719428 pmcid: 6348388 doi: 10.3389/fcimb.2019.00002
Duvallet, C. et al. Framework for rational donor selection in fecal microbiota transplant clinical trials. PloS ONE 14, e0222881 (2019).
Olesen, S. W. & Gerardin, Y. Re-evaluating the evidence for fecal microbiota transplantation “super-donors” in inflammatory bowel disease. J. Crohns Colitis 15, 453–461 (2021).
pubmed: 32808030 doi: 10.1093/ecco-jcc/jjaa170
Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal imcrobiota composition. Cell Metab. 26, 611–619 (2017).
pubmed: 28978426 doi: 10.1016/j.cmet.2017.09.008
Danne, C., Rolhion, N. & Sokol, H. Recipient factors in fecal microbiota transplantation: one stool does not fit all. Nat. Rev. Gastroenterol. Hepatol. 18, 503–513 (2021).
Fujimoto, K. et al. Functional restoration of bacteriomes and viromes by fecal microbiota transplantation. Gastroenterology 160, 2089–2102 (2021).
pubmed: 33577875 doi: 10.1053/j.gastro.2021.02.013
Peri, R. et al. The impact of technical and clinical factors on fecal microbiota transfer outcomes for the treatment of recurrent Clostridioides difficile infections in Germany. United European Gastroenterol. J. 7, 716–722 (2019).
pubmed: 31210950 pmcid: 6545715 doi: 10.1177/2050640619839918
Draper, L. A. et al. Long-term colonisation with donor bacteriophages following successful fecal microbial transplantation. Microbiome 6, 220 (2018).
pubmed: 30526683 pmcid: 6288847 doi: 10.1186/s40168-018-0598-x
Leonardi, I. et al. Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis. Cell Host Microbe 27, 823–829 (2020).
Zuo, T. et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat. Commun. 9, 3663 (2018).
pubmed: 30202057 pmcid: 6131390 doi: 10.1038/s41467-018-06103-6
Li, S. S. et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 352, 586–589 (2016).
pubmed: 27126044 doi: 10.1126/science.aad8852
Smillie, C. S. et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe 23, 229–240 (2018).
pubmed: 29447696 pmcid: 8318347 doi: 10.1016/j.chom.2018.01.003
Podlesny, D. et al. Metagenomic strain detection with SameStr: identification of a persisting core gut microbiota transferable by fecal transplantation. Microbiome 10, 53 (2022).
pubmed: 35337386 pmcid: 8951724 doi: 10.1186/s40168-022-01251-w
Aggarwala, V. et al. Precise quantification of bacterial strains after fecal microbiota transplantation delineates long-term engraftment and explains outcomes. Nat. Microbiol. 6, 1309–1318 (2021).
pubmed: 34580445 pmcid: 8993687 doi: 10.1038/s41564-021-00966-0
Lee, S. T. M. et al. Tracking microbial colonization in fecal microbiota transplantation experiments via genome-resolved metagenomics. Microbiome 5, 50 (2017).
pubmed: 28473000 pmcid: 5418705 doi: 10.1186/s40168-017-0270-x
Wilson, B. C. et al. Strain engraftment competition and functional augmentation in a multi-donor fecal microbiota transplantation trial for obesity. Microbiome 9, 107 (2021).
pubmed: 33985595 pmcid: 8120839 doi: 10.1186/s40168-021-01060-7
Ng, S. C. et al. Microbiota engraftment after fecal microbiota transplantation in obese subjects with type 2 diabetes: a 24-week, double-blind, randomised controlled trial. Gut 71, 716–723 (2022).
pubmed: 33785557 doi: 10.1136/gutjnl-2020-323617
Watson, A. R., Fuessel, J., Veseli, I. & DeLongchamp, J. Z. Adaptive ecological processes and metabolic independence drive microbial colonization and resilience in the human gut. Preprint at https://doi.org/10.1101/2021.03.02.433653 (2021).
Walter, J., Maldonado-Gómez, M. X. & Martínez, I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr. Opin. Biotechnol. 49, 129–139 (2018).
pubmed: 28866242 doi: 10.1016/j.copbio.2017.08.008
Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).
pubmed: 29522742 doi: 10.1016/j.cell.2018.02.044
Xiao, Y., Angulo, M. T., Lao, S., Weiss, S. T. & Liu, Y.-Y. An ecological framework to understand the efficacy of fecal microbiota transplantation. Nat. Commun. 11, 3329 (2020).
pubmed: 32620839 pmcid: 7334230 doi: 10.1038/s41467-020-17180-x
Moss, E. L. et al. Long-term taxonomic and functional divergence from donor bacterial strains following fecal microbiota transplantation in immunocompromised patients. PLoS ONE 12, e0182585 (2017).
pubmed: 28827811 pmcid: 5565110 doi: 10.1371/journal.pone.0182585
Singh, R. et al. Fecal microbiota transplantation against intestinal colonization by extended spectrum beta-lactamase producing Enterobacteriaceae: a proof of principle study. BMC Res. Notes 11, 190 (2018).
pubmed: 29566738 pmcid: 5863815 doi: 10.1186/s13104-018-3293-x
Bar-Yoseph, H. et al. Oral capsulized fecal microbiota transplantation for eradication of carbapenemase-producing Enterobacteriaceae colonization with a metagenomic perspective. Clin. Infect. Dis. 73, e166–e175 (2020).
Leo, S. et al. Metagenomic characterization of gut microbiota of carriers of extended-spectrum beta-lactamase or carbapenemase-producing Enterobacteriaceae following treatment with oral antibiotics and fecal microbiota transplantation: results from a multicenter randomized trial. Microorganisms 8, 941 (2020).
Koopen, A. M. et al. Effect of fecal microbiota transplantation combined with Mediterranean diet on insulin sensitivity in subjects with metabolic syndrome. Front. Microbiol. 12, 662159 (2021).
pubmed: 34177842 pmcid: 8222733 doi: 10.3389/fmicb.2021.662159
Rossen, N. G. et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 149, 110–118 (2015).
pubmed: 25836986 doi: 10.1053/j.gastro.2015.03.045
Nusbaum, D. J. et al. Gut microbial and metabolomic profiles after fecal microbiota transplantation in pediatric ulcerative colitis patients. FEMS Microbiol. Ecol. 94, fiy133 (2018).
Damman, C. J. et al. Low level engraftment and improvement following a single colonoscopic administration of fecal microbiota to patients with ulcerative colitis. PLoS ONE 10, e0133925 (2015).
pubmed: 26288277 pmcid: 4544847 doi: 10.1371/journal.pone.0133925
Goll, R. et al. Effects of fecal microbiota transplantation in subjects with irritable bowel syndrome are mirrored by changes in gut microbiome. Gut Microbes 12, 1794263 (2020).
pubmed: 32991818 pmcid: 7583512 doi: 10.1080/19490976.2020.1794263
Vaughn, B. P. et al. Increased intestinal microbial diversity following fecal microbiota transplant for active Crohn’s disease. Inflamm. Bowel Dis. 22, 2182–2190 (2016).
pubmed: 27542133 doi: 10.1097/MIB.0000000000000893
Ianiro, G. et al. Fecal microbiota transplantation for the treatment of diarrhoea induced by tyrosine-kinase inhibitors in patients with metastatic renal cell carcinoma. Nat. Commun. 11, 4333 (2020).
pubmed: 32859933 pmcid: 7455693 doi: 10.1038/s41467-020-18127-y
Zhao, H.-J. et al. The efficacy of fecal microbiota transplantation for children with Tourette syndrome: a preliminary study. Front. Psychiatry 11, 554441 (2020).
pubmed: 33424650 pmcid: 7793740 doi: 10.3389/fpsyt.2020.554441
Goloshchapov, O. V. et al. Long-term impact of fecal transplantation in healthy volunteers. BMC Microbiol. 19, 312 (2019).
pubmed: 31888470 pmcid: 6938016 doi: 10.1186/s12866-019-1689-y
Tian, L. et al. Deciphering functional redundancy in the human microbiome. Nat. Commun. 11, 6217 (2020).
pubmed: 33277504 pmcid: 7719190 doi: 10.1038/s41467-020-19940-1
Hildebrand, F. et al. Dispersal strategies shape persistence and evolution of human gut bacteria. Cell Host Microbe 29, 1167–1176 (2021).
pubmed: 34111423 pmcid: 8288446 doi: 10.1016/j.chom.2021.05.008
Lahti, L., Salojärvi, J., Salonen, A., Scheffer, M. & de Vos, W. M. Tipping elements in the human intestinal ecosystem. Nat. Commun. 5, 4344 (2014).
pubmed: 25003530 doi: 10.1038/ncomms5344
Scheffer, M., Carpenter, S. R., Dakos, V. & van Nes, E. H. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).
Gonze, D., Lahti, L., Raes, J. & Faust, K. Multi-stability and the origin of microbial community types. ISME J. 11, 2159–2166 (2017).
pubmed: 28475180 pmcid: 5607358 doi: 10.1038/ismej.2017.60
Costea, P. I. et al. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 3, 8–16 (2018).
pubmed: 29255284 doi: 10.1038/s41564-017-0072-8
Debray, R. et al. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 20, 109–121 (2021).
Zaneveld, J. R., McMinds, R. & Thurber, R. V. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).
pubmed: 28836573 doi: 10.1038/nmicrobiol.2017.121
Basson, A. R., Zhou, Y., Seo, B., Rodriguez-Palacios, A. & Cominelli, F. Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease. Transl. Res. 226, 1–11 (2020).
pubmed: 32585148 pmcid: 7308243 doi: 10.1016/j.trsl.2020.05.008
de Groot, P. et al. Fecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut 70, 92–105 (2021).
pubmed: 33106354 doi: 10.1136/gutjnl-2020-322630
Ott, S. J. et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152, 799–811 (2017).
pubmed: 27866880 doi: 10.1053/j.gastro.2016.11.010
Bojanova, D. P. & Bordenstein, S. R. Fecal transplants: what is being transferred? PLoS Biol. 14, e1002503 (2016).
pubmed: 27404502 pmcid: 4942072 doi: 10.1371/journal.pbio.1002503
Fuentes, S. et al. Microbial shifts and signatures of long-term remission in ulcerative colitis after fecal microbiota transplantation. ISME J. 11, 1877–1889 (2017).
pubmed: 28398347 pmcid: 5520032 doi: 10.1038/ismej.2017.44
Coelho, L. P. et al. NG-meta-profiler: fast processing of metagenomes using NGLess, a domain-specific language. Microbiome 7, 84 (2019).
pubmed: 31159881 pmcid: 6547473 doi: 10.1186/s40168-019-0684-8
Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10, 1014 (2019).
pubmed: 30833550 pmcid: 6399450 doi: 10.1038/s41467-019-08844-4
Coelho, L. P. et al. Towards the biogeography of prokaryotic genes. Nature 601, 252–256 (2022).
pubmed: 34912116 doi: 10.1038/s41586-021-04233-4
Huerta-Cepas, J. et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).
pubmed: 30418610 doi: 10.1093/nar/gky1085
Vieira-Silva, S. et al. Species–function relationships shape ecological properties of the human gut microbiome. Nat. Microbiol. 1, 16088 (2016).
pubmed: 27573110 doi: 10.1038/nmicrobiol.2016.88
Darzi, Y., Falony, G., Vieira-Silva, S. & Raes, J. Towards biome-specific analysis of meta-omics data. ISME J. 10, 1025–1028 (2016).
pubmed: 26623543 doi: 10.1038/ismej.2015.188
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
pubmed: 28298430 pmcid: 5411777 doi: 10.1101/gr.213959.116
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).
Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 7, e7359 (2019).
pubmed: 31388474 pmcid: 6662567 doi: 10.7717/peerj.7359
Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
pubmed: 25609793 doi: 10.1093/bioinformatics/btv033
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).
pubmed: 25218180 doi: 10.1038/nmeth.3103
Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).
pubmed: 29807988 pmcid: 6786971 doi: 10.1038/s41564-018-0171-1
Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).
pubmed: 30219103 pmcid: 6138922 doi: 10.1186/s40168-018-0541-1
Mende, D. R. et al. ProGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes. Nucleic Acids Res. 45, D529–D534 (2017).
pubmed: 28053165 doi: 10.1093/nar/gkw989
Mende, D. R. et al. ProGenomes2: an improved database for accurate and consistent habitat, taxonomic and functional annotations of prokaryotic genomes. Nucleic Acids Res. 48, D621–D625 (2020).
pubmed: 31647096
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
pubmed: 25977477 pmcid: 4484387 doi: 10.1101/gr.186072.114
Orakov, A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22, 178 (2021).
pubmed: 34120611 pmcid: 8201837 doi: 10.1186/s13059-021-02393-0
Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
pubmed: 20211023 pmcid: 2848648 doi: 10.1186/1471-2105-11-119
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
pubmed: 24642063 doi: 10.1093/bioinformatics/btu153
Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
pubmed: 28460117 pmcid: 5850834 doi: 10.1093/molbev/msx148
Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525 (2020).
pubmed: 31665441
Gibson, M. K., Forsberg, K. J. & Dantas, G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 9, 207–216 (2015).
pubmed: 25003965 doi: 10.1038/ismej.2014.106
Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat. Publ. Group 10, 881–884 (2013).
Schmidt, T. S. B. et al. Drivers and determinants of strain dynamics following fecal microbiota transplantation. Zenodo https://doi.org/10.5281/ZENODO.5534163 (2021).
Rodrigues, J. F. M., Schmidt, S. B. T., Tackmann, J. & von Mering, C. MAPseq: highly efficient k-mer search with confidence estimates, for rRNA sequence analysis. Bioinformatics 33, 3808–3810 (2017).
Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. DRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).
pubmed: 28742071 pmcid: 5702732 doi: 10.1038/ismej.2017.126
Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).
pubmed: 27323842 pmcid: 4915045 doi: 10.1186/s13059-016-0997-x
Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).
pubmed: 30504855 pmcid: 6269478 doi: 10.1038/s41467-018-07641-9
Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).
pubmed: 26198102 pmcid: 4817141 doi: 10.1093/bioinformatics/btv421
Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004).
pubmed: 15318951 pmcid: 517706 doi: 10.1186/1471-2105-5-113
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
pubmed: 20224823 pmcid: 2835736 doi: 10.1371/journal.pone.0009490
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Costea, P. I. et al. MetaSNV: a tool for metagenomic strain level analysis. PLoS ONE 12, e0182392 (2017).
pubmed: 28753663 pmcid: 5533426 doi: 10.1371/journal.pone.0182392
Schmidt, T. S. B. et al. Extensive transmission of microbes along the gastrointestinal tract. eLife 8, e42693 (2019).
Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
pubmed: 20808728 pmcid: 2929880 doi: 10.18637/jss.v033.i01
Schmidt, T. S. B. et al. Analysis data, “Drivers and Determinants of Strain Dynamics Following Fecal Microbiota Transplantation”. Zenodo https://doi.org/10.5281/ZENODO.5534163 (2021).

Auteurs

Thomas S B Schmidt (TSB)

Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Simone S Li (SS)

Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, Australia.

Oleksandr M Maistrenko (OM)

Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Department of Marine Microbiology & Biogeochemistry, Royal Netherlands Institute for Sea Research, 't Horntje, the Netherlands.

Wasiu Akanni (W)

Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Luis Pedro Coelho (LP)

Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.

Sibasish Dolai (S)

Centre for Digestive Diseases, Sydney, New South Wales, Australia.

Anthony Fullam (A)

Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Anna M Glazek (AM)

Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Rajna Hercog (R)

Genomic Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany.

Hilde Herrema (H)

Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands.

Ferris Jung (F)

Genomic Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany.

Stefanie Kandels (S)

Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Askarbek Orakov (A)

Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Roman Thielemann (R)

Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Moritz von Stetten (M)

Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Thea Van Rossum (T)

Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Vladimir Benes (V)

Genomic Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany.

Thomas J Borody (TJ)

Centre for Digestive Diseases, Sydney, New South Wales, Australia.

Willem M de Vos (WM)

Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.
Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

Cyriel Y Ponsioen (CY)

Department of Gastroenterology & Hepatology, Amsterdam University Medical Centers, Amsterdam, the Netherlands.

Max Nieuwdorp (M)

Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands.

Peer Bork (P)

Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. peer.bork@embl.org.
Max Delbrück Center for Molecular Medicine, Berlin, Germany. peer.bork@embl.org.
Yonsei Frontier Lab, Yonsei University, Seoul, South Korea. peer.bork@embl.org.
Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany. peer.bork@embl.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH