HSP90 drives the Rab11a-mediated vesicular transport of the cell surface receptors in osteoclasts.
Rab11a
heat shock protein 90 (HSP90)
osteoclasts
vesicular transport
Journal
Cell biochemistry and function
ISSN: 1099-0844
Titre abrégé: Cell Biochem Funct
Pays: England
ID NLM: 8305874
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
revised:
25
08
2022
received:
13
03
2022
accepted:
30
08
2022
pubmed:
17
9
2022
medline:
15
12
2022
entrez:
16
9
2022
Statut:
ppublish
Résumé
Rab11a, which ubiquitously localizes to early and recycling endosomes, is required for regulating the vesicular transport of cellular cargos. Interestingly, our previous study revealed that Rab11a served as a negative regulator of osteoclastogenesis by facilitating the lysosomal proteolysis of (1) colony-stimulating factor-1 (c-fms) receptor and (2) receptor activator of nuclear factor-κB (RANK) receptor, thereby resulting in inhibition of osteoclast (OC) differentiation, maturation, and bone-resorbing activity. However, the molecular mechanisms of how Rab11a negatively affected osteoclastogenesis were largely unknown. Heat shock protein (HSP90), including two isoforms HSP90α and HSP90β, necessitates the stability, maturation, and activity of a broad range of its clients, and is essentially required for a vast array of signal transduction pathways in nonstressful conditions. Furthermore, cumulative evidence suggests that HSP90 is a vital element of the vesicular transport network. Indeed, our recent study revealed that HSP90, a novel effector protein of Rab11b, modulated Rab11b-mediated osteoclastogenesis. In this study, we also found that Rab11a interacted with both HSP90α and HSP90β in OCs. Upon blockade of HSP90 ATPase activity by a specific inhibitor(17-allylamino-demethoxygeldanamycin), we showed that (1) the ATPase domain of HSP90 was a prerequisite for the interaction between HSP90 and Rab11a, and (2) the interaction of HSP90 to Rab11a sufficiently maintained the inhibitory effects of Rab11a on osteoclastogenesis. Altogether, our findings undoubtedly indicate a novel role of HSP90 in regulating Rab11a-mediated osteoclastogenesis.
Substances chimiques
Adenosine Triphosphatases
EC 3.6.1.-
HSP90 Heat-Shock Proteins
0
Receptor Activator of Nuclear Factor-kappa B
0
rab11 protein
EC 3.6.1.-
rab GTP-Binding Proteins
EC 3.6.5.2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
838-855Subventions
Organisme : Japan Society for the Promotion of Science
ID : JP16K11863 (KO)
Organisme : Japan Society for the Promotion of Science
ID : JP20K09904 (CS)
Organisme : Japan Society for the Promotion of Science
ID : JP17K11642 (TE)
Informations de copyright
© 2022 John Wiley & Sons Ltd.
Références
Kim J-M, Lin C, Stavre Z, Greenblatt MB, Shim J-H. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020;9:2073.
Kim JH, Kim N. Signaling pathways in osteoclast differentiation. Chonnam Med J. 2016;52(1):12-17.
Everts V, Korper W, Hoeben KA, et al. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. J Bone Miner Res. 2006;21(9):1399-1408.
Ballanti P, Minisola S, Pacitti MT, et al. Tartrate-resistant acid phosphate activity as osteoclastic marker: sensitivity of cytochemical assessment and serum assay in comparison with standardized osteoclast histomorphometry. Osteoporos Int. 1997;7(1):39-43.
Ross FP. M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann N Y Acad Sci. 2006;1068:110-116.
Li G, Marlin MC. Rab family of GTPases. Methods Mol Biol. 2015;1298:1-15.
Zeng J, Ren M, Gravotta D, et al. Identification of a putative effector protein for rab11 that participates in transferrin recycling. Proc Natl Acad Sci USA. 1999;96(6):2840-2845.
Haugsten EM, Brech A, Liestøl K, Norman JC, Wesche J. Photoactivation approaches reveal a role for Rab11 in FGFR4 recycling and signalling. Traffic. 2014;15(6):665-683.
Campa CC, Hirsch E. Rab11 and phosphoinositides: a synergy of signal transducers in the control of vesicular trafficking. Adv Biol Regul. 2017;63:132-139.
Husebye H, Aune MH, Stenvik J, et al. The Rab11a GTPase controls Toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity. 2010;33(4):583-596.
Sobajima T, Yoshimura S, Iwano T, et al. Rab11a is required for apical protein localisation in the intestine. Biol Open. 2014;4(1):86-94.
Ren M, Xu G, Zeng J, De Lemos-Chiarandini C, Adesnik M, Sabatini DD. Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc Natl Acad Sci USA. 1998;95(11):6187-6192.
Ullrich O, Reinsch S, Urbé S, Zerial M, Parton RG. Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol. 1996;135(4):913-924.
Prekeris R, Klumperman J, Scheller RH. A Rab11/Rip11 protein complex regulates apical membrane trafficking via recycling endosomes. Mol Cell. 2000;6(6):1437-1448.
Okusha Y, Tran MT, Itagaki M, et al. Rab11A functions as a negative regulator of osteoclastogenesis through dictating lysosome-Induced proteolysis of c-fms and RANK surface receptors. Cells. 2020;9(11):2384.
Tran MT, Okusha Y, Feng Y, et al. The inhibitory role of Rab11b in osteoclastogenesis through triggering Lysosome-Induced degradation of c-fms and RANK surface receptors. Int J Mol Sci. 2020;21:24.
Hoter A, El-Sabban ME, Naim HY. The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560.
Geller R, Taguwa S, Frydman J. Broad action of Hsp90 as a host chaperone required for viral replication. Biochim Biophys Acta. 2012;1823(3):698-706.
Lackie RE, Maciejewski A, Ostapchenko VG, et al. The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci. 2017;11:254.
Barrott JJ, Haystead TA. Hsp90, an unlikely ally in the war on cancer. FEBS J. 2013;280(6):1381-1396.
Ono K, Sogawa C, Kawai H, et al. Triple knockdown of CDC37, HSP90-alpha and HSP90-beta diminishes extracellular vesicles-driven malignancy events and macrophage M2 polarization in oral cancer. J Extracell Vesicles. 2020;9(1):1769373.
Chai RC, Kouspou MM, Lang BJ, et al. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner*. J Biol Chem. 2014;289(19):13602-13614.
van der Kraan AGJ, Chai RCC, Singh PP, et al. HSP90 inhibitors enhance differentiation and MITF (microphthalmia transcription factor) activity in osteoclast progenitors. Biochem J. 2013;451(2):235-244.
Tran MT, Okusha Y, Feng Y, et al. A novel role of HSP90 in regulating osteoclastogenesis by abrogating Rab11b-driven transport. Biochim Biophys Acta. 2021;1868(10):119096.
Sakai E, Shimada-Sugawara M, Nishishita K, et al. Suppression of RANKL-dependent heme oxygenase-1 is required for high mobility group box 1 release and osteoclastogenesis. J Cell Biochem. 2012;113(2):486-498.
Nakanishi H, Tominaga K, Amano T, Hirotsu I, Inoue T, Yamamoto K. Age-related changes in activities and localizations of cathepsins D, E, B, and L in the rat brain tissues. Exp Neurol. 1994;126(1):119-128.
Kukita T, Wada N, Kukita A, et al. RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med. 2004;200(7):941-946.
Watanabe T, Kukita T, Kukita A, et al. Direct stimulation of osteoclastogenesis by MIP-1alpha: evidence obtained from studies using RAW264 cell clone highly responsive to RANKL. J Endocrinol. 2004;180(1):193-201.
do Couto NF, Queiroz-Oliveira T, Horta MF, Castro-Gomes T, Andrade LO. Measuring intracellular vesicle density and dispersion using fluorescence microscopy and ImageJ/Fiji. Bio-protocol. 2020;10(15):e3703.
Koontz L. TCA precipitation. Methods Enzymol. 2014;541:3-10.
Yamaguchi Y, Sakai E, Okamoto K, et al. Rab44, a novel large Rab GTPase, negatively regulates osteoclast differentiation by modulating intracellular calcium levels followed by NFATc1 activation. Cell Mol Life Sci. 2018;75(1):33-48.
Sogawa C, Eguchi T, Tran MT, et al. Antiparkinson drug benztropine suppresses tumor growth, circulating tumor cells, and metastasis by acting on SLC6A3/DAT and reducing STAT3. Cancers (Basel). 2020;12(2):523.
Song I, Kim JH, Kim K, Jin HM, Youn BU, Kim N. Regulatory mechanism of NFATc1 in RANKL-induced osteoclast activation. FEBS Lett. 2009;583(14):2435-2440.
Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 2017;18(6):345-360.
Wu Y, Ding Y, Zheng X, Liao K. The molecular chaperone Hsp90 maintains Golgi organization and vesicular trafficking by regulating microtubule stability. J Mol Cell Biol. 2020;12(6):448-461.
Wu Y, Zheng X, Ding Y, et al. The molecular chaperone Hsp90α deficiency causes retinal degeneration by disrupting Golgi organization and vesicle transportation in photoreceptors. J Mol Cell Biol. 2020;12(3):216-229.
Bozza G, Capitani M, Montanari P, et al. Role of ARF6, Rab11 and external Hsp90 in the trafficking and recycling of recombinant-soluble Neisseria meningitidis adhesin A (rNadA) in human epithelial cells. PLoS One. 2014;9(10):e110047.
Liu J, Zhang J-P, Shi M, et al. Rab11a and HSP90 regulate recycling of extracellular alpha-synuclein. J Neurosci. 2009;29(5):1480-1485.
Li J, Buchner J. Structure, function and regulation of the hsp90 machinery. Biomed J. 2013;36(3):106-117.
Zhang X, Gao F, Zhong S. Combinatorial inhibition of mTORC2 and Hsp90 leads to a distinctly effective therapeutic strategy in malignant pheochromocytoma. Curr Cancer Drug Targets. 2019;19(9):698-706.
Schulz R, Marchenko ND, Holembowski L, et al. Inhibiting the HSP90 chaperone destabilizes macrophage migration inhibitory factor and thereby inhibits breast tumor progression. J Exp Med. 2012;209(2):275-289.
Green EG, Ramm E, Riley NM, Spiro DJ, Goldenring JR, Wessling-Resnick M. Rab11 is associated with transferrin-containing recycling compartments in K562 cells. Biochem Biophys Res Commun. 1997;239(2):612-616.
Zulkefli KL, Houghton FJ, Gosavi P, Gleeson PA. A role for Rab11 in the homeostasis of the endosome-lysosomal pathway. Exp Cell Res. 2019;380(1):55-68.
Schlierf B, Fey GH, Hauber J, Hocke GM, Rosorius O. Rab11b is essential for recycling of transferrin to the plasma membrane. Exp Cell Res. 2000;259(1):257-265.
Shimada-Sugawara M, Sakai E, Okamoto K, et al. Rab27A regulates transport of cell surface receptors modulating multinucleation and Lysosome-related organelles in osteoclasts. Sci Rep. 2015;5(1):9620.
Feng Y, Tran MT, Lu Y, et al. Rab34 plays a critical role as a bidirectional regulator of osteoclastogenesis. Cell Biochem Funct. 2022;40(3):263-277.