[Importance of clonal hematopoiesis for hematologic neoplasms].
Bedeutung der klonalen Hämatopoese für hämatologische Neoplasien.
Clonal hematopoiesis of indeterminate potential
Hematologic neoplasms/transformation rate
Hematopoietic stem cells
Risk factors
Somatic mutations
Journal
Innere Medizin (Heidelberg, Germany)
ISSN: 2731-7099
Titre abrégé: Inn Med (Heidelb)
Pays: Germany
ID NLM: 9918384885306676
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
accepted:
23
08
2022
pubmed:
21
9
2022
medline:
29
10
2022
entrez:
20
9
2022
Statut:
ppublish
Résumé
Clonal hematopoiesis of indeterminate potential (CHIP) is a fairly newly described phenomenon characterized by myeloid cancer-associated somatic mutations detectable in the peripheral blood of individuals without evidence of hematologic disease. Individuals with CHIP have a significantly increased risk of developing a hematologic malignancy, although the overall rate of transformation is low. We review the current state of knowledge on causes of clonal expansion of blood cells as well as identifiable risk factors for progression to overt hematologic malignancy. CHIP is considered a premalignant state and predisposes to the development of hematologic malignancy. Because the overall rate of transformation is low, clear identification and subsequent monitoring of those CHIP individuals at a higher risk is of paramount importance. In the future, prospective studies evaluating preventive and/or preemptive therapeutic strategies may aid in avoiding progression to blood cancer in individuals with CHIP. HINTERGRUND: Die klonale Hämatopoese von unbestimmtem Potenzial (CHIP) ist ein relativ neu beschriebenes Phänomen, bei dem mit myeloischen Neoplasien assoziierte somatische Mutationen im peripheren Blut von Personen ohne Anzeichen einer hämatologischen Erkrankung nachweisbar sind. Personen mit CHIP haben ein deutlich erhöhtes Risiko, eine hämatologische Neoplasie zu entwickeln, obwohl die Gesamtrate der Transformation gering ist. Wir geben hier einen Überblick über den aktuellen Wissensstand zu den Ursachen der klonalen Expansion von Blutzellen sowie zu den identifizierbaren Risikofaktoren für die Entwicklung einer hämatologischen Neoplasie. Die CHIP gilt als prämaligner Zustand und prädisponiert für die Entwicklung einer hämatologischen Neoplasie. Da die Transformationsrate insgesamt niedrig ist, ist die eindeutige Identifizierung und anschließende Überwachung von CHIP-Patienten mit höherem Risiko von größter Bedeutung. In Zukunft könnten prospektive Studien zur Bewertung präventiver therapeutischer Strategien helfen, die Entwicklung von Blutkrebs bei Personen mit CHIP zu verhindern.
Sections du résumé
BACKGROUND
BACKGROUND
Clonal hematopoiesis of indeterminate potential (CHIP) is a fairly newly described phenomenon characterized by myeloid cancer-associated somatic mutations detectable in the peripheral blood of individuals without evidence of hematologic disease. Individuals with CHIP have a significantly increased risk of developing a hematologic malignancy, although the overall rate of transformation is low.
OBJECTIVE
OBJECTIVE
We review the current state of knowledge on causes of clonal expansion of blood cells as well as identifiable risk factors for progression to overt hematologic malignancy.
RESULTS AND CONCLUSION
CONCLUSIONS
CHIP is considered a premalignant state and predisposes to the development of hematologic malignancy. Because the overall rate of transformation is low, clear identification and subsequent monitoring of those CHIP individuals at a higher risk is of paramount importance. In the future, prospective studies evaluating preventive and/or preemptive therapeutic strategies may aid in avoiding progression to blood cancer in individuals with CHIP.
ZUSAMMENFASSUNG
UNASSIGNED
HINTERGRUND: Die klonale Hämatopoese von unbestimmtem Potenzial (CHIP) ist ein relativ neu beschriebenes Phänomen, bei dem mit myeloischen Neoplasien assoziierte somatische Mutationen im peripheren Blut von Personen ohne Anzeichen einer hämatologischen Erkrankung nachweisbar sind. Personen mit CHIP haben ein deutlich erhöhtes Risiko, eine hämatologische Neoplasie zu entwickeln, obwohl die Gesamtrate der Transformation gering ist.
FRAGESTELLUNG
UNASSIGNED
Wir geben hier einen Überblick über den aktuellen Wissensstand zu den Ursachen der klonalen Expansion von Blutzellen sowie zu den identifizierbaren Risikofaktoren für die Entwicklung einer hämatologischen Neoplasie.
ERGEBNISSE UND SCHLUSSFOLGERUNG
UNASSIGNED
Die CHIP gilt als prämaligner Zustand und prädisponiert für die Entwicklung einer hämatologischen Neoplasie. Da die Transformationsrate insgesamt niedrig ist, ist die eindeutige Identifizierung und anschließende Überwachung von CHIP-Patienten mit höherem Risiko von größter Bedeutung. In Zukunft könnten prospektive Studien zur Bewertung präventiver therapeutischer Strategien helfen, die Entwicklung von Blutkrebs bei Personen mit CHIP zu verhindern.
Autres résumés
Type: Publisher
(ger)
HINTERGRUND: Die klonale Hämatopoese von unbestimmtem Potenzial (CHIP) ist ein relativ neu beschriebenes Phänomen, bei dem mit myeloischen Neoplasien assoziierte somatische Mutationen im peripheren Blut von Personen ohne Anzeichen einer hämatologischen Erkrankung nachweisbar sind. Personen mit CHIP haben ein deutlich erhöhtes Risiko, eine hämatologische Neoplasie zu entwickeln, obwohl die Gesamtrate der Transformation gering ist.
Identifiants
pubmed: 36125513
doi: 10.1007/s00108-022-01401-0
pii: 10.1007/s00108-022-01401-0
doi:
Types de publication
English Abstract
Journal Article
Review
Langues
ger
Sous-ensembles de citation
IM
Pagination
1107-1114Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.
Références
Jaiswal S, Fontanillas P, Flannick J et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498
pubmed: 25426837
pmcid: 4306669
doi: 10.1056/NEJMoa1408617
Genovese G, Jaiswal S, Ebert BL, McCarroll SA (2015) Clonal hematopoiesis and blood-cancer risk. N Engl J Med 372:1071–1072
pubmed: 25760361
doi: 10.1056/NEJMc1500684
Xie M, Lu C, Wang J et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472–1478
pubmed: 25326804
pmcid: 4313872
doi: 10.1038/nm.3733
Young AL, Challen GA, Birmann BM, Druley TE (2016) Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 7:12484
pubmed: 27546487
pmcid: 4996934
doi: 10.1038/ncomms12484
Steensma DP, Bejar R, Jaiswal S et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126:9–16
pubmed: 25931582
pmcid: 4624443
doi: 10.1182/blood-2015-03-631747
Zink F, Stacey SN, Norddahl GL et al (2017) Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130:742–752
pubmed: 28483762
pmcid: 5553576
doi: 10.1182/blood-2017-02-769869
Hecker JS, Hartmann L, Rivière J et al (2021) CHIP and hips: clonal hematopoiesis is common in patients undergoing hip arthroplasty and is associated with autoimmune disease. Blood 138:1727–1732
pubmed: 34139005
doi: 10.1182/blood.2020010163
Bowman RL, Busque L, Levine RL (2018) Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22:157–170
pubmed: 29395053
pmcid: 5804896
doi: 10.1016/j.stem.2018.01.011
Khoury JD, Solary E, Abla O et al (2022) The 5th edition of the world health organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. https://doi.org/10.1038/s41375-022-01613-1
doi: 10.1038/s41375-022-01613-1
pubmed: 36151141
pmcid: 9214472
Fuster JJ, Zuriaga MA, Zorita V et al (2020) TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep 33:108326
pubmed: 33113366
pmcid: 7856871
doi: 10.1016/j.celrep.2020.108326
Agrawal M, Niroula A, Cunin P et al (2021) The association between clonal hematopoiesis and gout. Blood 138:595–595
doi: 10.1182/blood-2021-153639
Kim PG, Niroula A, Shkolnik V et al (2021) Dnmt3a-mutated clonal hematopoiesis promotes osteoporosis. J Exp Med. https://doi.org/10.1084/jem.20211872
doi: 10.1084/jem.20211872
pubmed: 34958351
pmcid: 8713298
Jaiswal S, Natarajan P, Silver AJ et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377:111–121
pubmed: 28636844
pmcid: 6717509
doi: 10.1056/NEJMoa1701719
Niroula A, Sekar A, Murakami MA et al (2021) Distinction of lymphoid and myeloid clonal hematopoiesis. Nat Med 27:1921–1927
pubmed: 34663986
pmcid: 8621497
doi: 10.1038/s41591-021-01521-4
Jaiswal S, Ebert BL (2019) Clonal hematopoiesis in human aging and disease. Science. https://doi.org/10.1126/science.aan4673
doi: 10.1126/science.aan4673
pubmed: 31672865
pmcid: 8050831
Mitchell E, Spencer Chapman M, Williams N et al (2022) Clonal dynamics of haematopoiesis across the human lifespan. Nature 606:343–350
pubmed: 35650442
pmcid: 9177428
doi: 10.1038/s41586-022-04786-y
Fabre MA, de Almeida JG, Fiorillo E et al (2022) The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 606:335–342
pubmed: 35650444
pmcid: 9177423
doi: 10.1038/s41586-022-04785-z
Challen GA, Goodell MA (2020) Clonal hematopoiesis: mechanisms driving dominance of stem cell clones. Blood 136:1590–1598
pubmed: 32746453
pmcid: 7530644
Florez MA, Tran BT, Wathan TK, DeGregori J, Pietras EM, King KY (2022) Clonal hematopoiesis: mutation-specific adaptation to environmental change. Cell Stem Cell 29:882–904
pubmed: 35659875
doi: 10.1016/j.stem.2022.05.006
van den Akker EB, Pitts SJ, Deelen J et al (2016) Uncompromised 10-year survival of oldest old carrying somatic mutations in DNMT3A and TET2. Blood 127:1512–1515
pubmed: 26825711
pmcid: 4797027
doi: 10.1182/blood-2015-12-685925
Buscarlet M, Provost S, Zada YF et al (2017) DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood 130:753–762
pubmed: 28655780
doi: 10.1182/blood-2017-04-777029
Hinds DA, Barnholt KE, Mesa RA et al (2016) Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood 128:1121–1128
pubmed: 27365426
pmcid: 5085254
doi: 10.1182/blood-2015-06-652941
Janiszewska H, Bąk A, Skonieczka K et al (2018) Constitutional mutations of the CHEK2 gene are a risk factor for MDS, but not for de novo AML. Leuk Res 70:74–78
pubmed: 29902706
doi: 10.1016/j.leukres.2018.05.013
Kennedy AL, Myers KC, Bowman J et al (2021) Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome. Nat Commun 12:1334
pubmed: 33637765
pmcid: 7910481
doi: 10.1038/s41467-021-21588-4
Fuster JJ, MacLauchlan S, Zuriaga MA et al (2017) Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355:842–847
pubmed: 28104796
pmcid: 5542057
doi: 10.1126/science.aag1381
Abegunde SO, Buckstein R, Wells RA, Rauh MJ (2018) An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. Exp Hematol 59:60–65
pubmed: 29195897
doi: 10.1016/j.exphem.2017.11.002
Avagyan S, Henninger JE, Mannherz WP et al (2021) Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science 374:768–772
pubmed: 34735227
doi: 10.1126/science.aba9304
Weeks LD, Marinac CR, Redd R et al (2022) Age-related diseases of inflammation in myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 139:1246–1250
pubmed: 34875037
doi: 10.1182/blood.2021014418
Chen J, Nie D, Wang X et al (2021) Enriched clonal hematopoiesis in seniors with dietary vitamin C inadequacy. Clin Nutr ESPEN 46:179–184
pubmed: 34857193
doi: 10.1016/j.clnesp.2021.10.014
Meisel M, Hinterleitner R, Pacis A et al (2018) Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557:580–584
pubmed: 29769727
pmcid: 6238954
doi: 10.1038/s41586-018-0125-z
Zeng H, He H, Guo L et al (2019) Antibiotic treatment ameliorates ten-eleven translocation 2 (TET2) loss-of-function associated hematological malignancies. Cancer Lett 467:1–8
pubmed: 31563562
pmcid: 6945766
doi: 10.1016/j.canlet.2019.09.013
Rodriguez-Meira A, Norfo R, Wen WX et al (2022) Deciphering TP53 mutant cancer evolution with single-cell multi-omics (bioRxiv)
doi: 10.1101/2022.03.28.485984
Kar SP, Quiros PM, Gu M et al (2022) Genome-wide analyses of 200,453 individuals yields new insights into the causes and consequences of clonal hematopoiesis https://doi.org/10.1101/2022.01.06.22268846 (bioRxiv)
doi: 10.1101/2022.01.06.22268846
SanMiguel JM, Eudy E, Loberg MA et al (2022) Distinct tumor necrosis factor alpha receptors dictate stem cell fitness versus lineage output in Dnmt3a-mutant clonal hematopoiesis (bioRxiv)
Coombs CC, Zehir A, Devlin SM et al (2017) Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21:374–382.e4
pubmed: 28803919
pmcid: 5591073
doi: 10.1016/j.stem.2017.07.010
Gillis NK, Ball M, Zhang Q et al (2017) Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol 18:112–121
pubmed: 27927582
doi: 10.1016/S1470-2045(16)30627-1
Hsu JI, Dayaram T, Tovy A et al (2018) PPM1D mutations drive clonal Hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23:700–713.e6
pubmed: 30388424
pmcid: 6224657
doi: 10.1016/j.stem.2018.10.004
Dawoud AAZ, Tapper WJ, Cross NCP (2020) Clonal myelopoiesis in the UK biobank cohort: ASXL1 mutations are strongly associated with smoking. Leukemia 34:2660–2672
pubmed: 32518416
doi: 10.1038/s41375-020-0896-8
Wong TN, Ramsingh G, Young AL et al (2015) Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518:552–555
pubmed: 25487151
doi: 10.1038/nature13968
Lindsley RC, Saber W, Mar BG et al (2017) Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med 376:536–547
pubmed: 28177873
pmcid: 5438571
doi: 10.1056/NEJMoa1611604
Zajkowicz A, Butkiewicz D, Drosik A, Giglok M, Suwiński R, Rusin M (2015) Truncating mutations of PPM1D are found in blood DNA samples of lung cancer patients. Br J Cancer 112:1114–1120
pubmed: 25742468
pmcid: 4366904
doi: 10.1038/bjc.2015.79
Swisher EM, Harrell MI, Norquist BM et al (2016) Somatic mosaic mutations in PPM1D and TP53 in the blood of women with ovarian carcinoma. JAMA Oncol 2:370–372
pubmed: 26847329
pmcid: 4865293
doi: 10.1001/jamaoncol.2015.6053
Bolton KL, Ptashkin RN, Gao T et al (2020) Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 52:1219–1226
pubmed: 33106634
pmcid: 7891089
doi: 10.1038/s41588-020-00710-0
Yoshizato T, Dumitriu B, Hosokawa K et al (2015) Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med 373:35–47
pubmed: 26132940
pmcid: 7478337
doi: 10.1056/NEJMoa1414799
Kulasekararaj AG, Jiang J, Smith AE et al (2014) Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome. Blood 124:2698–2704
pubmed: 25139356
pmcid: 4383793
doi: 10.1182/blood-2014-05-574889
Zhang CRC, Nix D, Gregory M et al (2019) Inflammatory cytokines promote clonal hematopoiesis with specific mutations in ulcerative colitis patients. Exp Hematol 80:36–41.e3
pubmed: 31812712
pmcid: 7031927
doi: 10.1016/j.exphem.2019.11.008
Savola P, Lundgren S, Keränen MAI et al (2018) Clonal hematopoiesis in patients with rheumatoid arthritis. Blood Cancer J. https://doi.org/10.1038/s41408-018-0107-2
doi: 10.1038/s41408-018-0107-2
pubmed: 30061683
pmcid: 6066480
Arends CM, Weiss M, Christen F et al (2020) Clonal hematopoiesis in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Haematologica 105:e264–7
pubmed: 31582546
pmcid: 7271609
doi: 10.3324/haematol.2019.223305
Ertz-Archambault N, Kosiorek H, Taylor GE et al (2017) Association of therapy for autoimmune disease with myelodysplastic syndromes and acute myeloid leukemia. JAMA Oncol 3:936–943
pubmed: 28152123
pmcid: 5547922
doi: 10.1001/jamaoncol.2016.6435
van Zeventer IA, de Graaf AO, Wouters HJCM et al (2020) Mutational spectrum and dynamics of clonal hematopoiesis in anemia of older individuals. Blood 135:1161–1170
pubmed: 32243522
Malcovati L, Gallì A, Travaglino E et al (2017) Clinical significance of somatic mutation in unexplained blood cytopenia. Blood 129:3371–3378
pubmed: 28424163
pmcid: 5542849
doi: 10.1182/blood-2017-01-763425
Rossi M, Meggendorfer M, Zampini M et al (2021) Clinical relevance of clonal hematopoiesis in persons aged ≥80 years. Blood 138:2093–2105
pubmed: 34125889
doi: 10.1182/blood.2021011320
Abelson S, Collord G, Ng SWK et al (2018) Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 107:2099
Desai P, Mencia-Trinchant N, Savenkov O et al (2018) Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med 24:1–12
doi: 10.1038/s41591-018-0081-z
Steensma DP, Bolton KL (2020) What to tell your patient with clonal hematopoiesis and why: insights from 2 specialized clinics. Blood 136:1623–1631
pubmed: 32736381
pmcid: 7530645
Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131
pubmed: 28845751
doi: 10.1056/NEJMoa1707914
Svensson EC, Madar A, Campbell CD et al (2022) TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol 7:521–528
pubmed: 35385050
doi: 10.1001/jamacardio.2022.0386