Making Highly Elastic and Tough Hydrogels from Doughs.
elasticity
entanglement
hydrogels
poly(ethylene glycol)
toughness
Journal
Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
revised:
11
09
2022
received:
19
07
2022
pubmed:
21
9
2022
medline:
21
12
2022
entrez:
20
9
2022
Statut:
ppublish
Résumé
A hydrogel is often fabricated from preexisting polymer chains by covalently crosslinking them into a polymer network. The crosslinks make the hydrogel swell-resistant but brittle. This conflict is resolved here by making a hydrogel from a dough. The dough is formed by mixing long polymer chains with a small amount of water and photoinitiator. The dough is then homogenized by kneading and annealing at elevated temperatures, during which the crowded polymer chains densely entangle. The polymer chains are then sparsely crosslinked into a polymer network under an ultraviolet lamp, and submerged in water to swell to equilibrium. The resulting hydrogel is both swell-resistant and tough. The hydrogel also has near-perfect elasticity, high strength, high fatigue resistance, and low friction. The method is demonstrated with two widely used polymers, poly(ethylene glycol) and cellulose. These hydrogels have never been made swell-resistant, elastic, and tough before. The method is generally applicable to synthetic and natural polymers, and is compatible with industrial processing technologies, opening doors to the development of sustainable, high-performance hydrogels.
Identifiants
pubmed: 36126085
doi: 10.1002/adma.202206577
doi:
Substances chimiques
Hydrogels
0
Polyethylene Glycols
3WJQ0SDW1A
Polymers
0
Water
059QF0KO0R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2206577Subventions
Organisme : MRSEC
ID : DMR-2011754
Organisme : Kwanjeong Educational Foundation
Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
I. Dimitrov, C. B. Tsvetanov, Polym. Sci. Compr. Ref. 2012, 4, 551.
F. Haaf, A. Sanner, F. Straub, Polym. J. 1985, 17, 143.
C. M. Hassan, N. A. Peppas, in Biopolymers: PVA Hydrogels Anionic Polymers Nanocomposites, Advances in Polymer Science, Vol. 153, Springer, Berlin/Heidelberg, Germany 2000, pp. 37-65.
M. L. Hallensleben, R. Fuss, F. Mummy, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany 2015, https://doi.org/10.1002/14356007.a21_743.pub2.
M. Baumgartner, F. Hartmann, M. Drack, D. Preninger, D. Wirthl, R. Gerstmayr, L. Lehner, G. Mao, R. Pruckner, S. Demchyshyn, L. Reiter, M. Strobel, T. Stockinger, D. Schiller, S. Kimeswenger, F. Greibich, G. Buchberger, E. Bradt, S. Hild, S. Bauer, M. Kaltenbrunner, Nat. Mater. 2020, 19, 1102.
K. Y. Lee, D. J. Mooney, Chem. Rev. 2001, 101, 1869.
S. R. Stauffer, N. A. Peppast, Polymer 1992, 33, 3932.
S. Lin, X. Liu, J. Liu, H. Yuk, H.-C. Loh, G. A. Parada, C. Settens, J. Song, A. Masic, G. H. McKinley, X. Zhao, Sci. Adv. 2019, 5, eaau8528.
M. Hua, S. Wu, Y. Ma, Y. Zhao, Z. Chen, I. Frenkel, J. Strzalka, H. Zhou, X. Zhu, X. He, Nature 2021, 590, 594.
F. Yang, J. Zhao, W. J. Koshut, J. Watt, J. C. Riboh, K. Gall, B. J. Wiley, Adv. Funct. Mater. 2020, 30, 2003451.
J. Herzberger, K. Niederer, H. Pohlit, J. Seiwert, M. Worm, F. R. Wurm, H. Frey, Chem. Rev. 2016, 116, 2170.
C.-C. Lin, K. S. Anseth, Pharm. Res. 2009, 26, 631.
A. J. Vernengo, in Adhesives - Applications and Properties, (Ed: A. Rudawska) InTechOpen, London, UK 2016, pp. 99-136.
P. J. M. Bouten, M. Zonjee, J. Bender, S. T. K. Yauw, H. van Goor, J. C. M. van Hest, R. Hoogenboom, Prog. Polym. Sci. 2014, 39, 1375.
Y. Hou, C. A. Schoener, K. R. Regan, D. Munoz-Pinto, M. S. Hahn, M. A. Grunlan, Biomacromolecules 2010, 11, 648.
J. Cui, M. A. Lackey, A. E. Madkour, E. M. Saffer, D. M. Griffin, S. R. Bhatia, A. J. Crosby, G. N. Tew, Biomacromolecules 2012, 13, 584.
O. Z. Higa, S. O. Rogero, L. D. B. Machado, M. B. Mathor, A. B. Lugao, Radiat. Phys. Chem. 1999, 55, 705.
N. A. Peppas, E. W. Merrill, J. Appl. Polym. Sci. 1977, 21, 1763.
H. J. Kong, E. Wong, D. J. Mooney, Macromolecules 2003, 36, 4582.
A. Khanlari, J. E. Schulteis, T. C. Suekama, M. S. Detamore, S. H. Gehrke, J. Appl. Polym. Sci. 2015, 132, https://doi.org/10.1002/app.42009.
Y. Okumura, K. Ito, Adv. Mater. 2001, 13, 485.
L. Jiang, C. Liu, K. Mayumi, K. Kato, H. Yokoyama, K. Ito, Chem. Mater. 2018, 30, 5013.
C. Liu, N. Morimoto, L. Jiang, S. Kawahara, T. Noritomi, H. Yokoyama, K. Mayumi, K. Ito, Science 2021, 372, 1078.
T. Karino, M. Shibayama, K. Ito, Phys. B (Amsterdam, Neth.) 2006, 385-386, 692.
T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Sasaki, M. Shibayama, U.-i. Chung, Macromolecules 2008, 41, 5379.
Y. Akagi, H. Sakurai, J. P. Gong, U.-i. Chung, T. Sakai, J. Chem. Phys. 2013, 139, 144905.
P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, USA 1953.
P. G. de Gennes, J. Chem. Phys. 1971, 55, 572.
C. Norioka, Y. Inamoto, C. Hajime, A. Kawamura, T. Miyata, NPG Asia Mater. 2021, 13, 34.
J. Kim, G. Zhang, M. Shi, Z. Suo, Science 2021, 374, 212.
M. Rubinstein, R. H. Colby, Polymer Physics, Oxford University Press, Oxford, UK 2003.
S. Wu, J. Polym. Sci., Part B: Polym. Phys. 1989, 27, 723.
M. M. Crowley, F. Zhang, J. J. Koleng, J. W. McGinity, Biomaterials 2002, 23, 4241.
C. Chen, Z. Wang, Z. Suo, Extreme Mech. Lett. 2017, 10, 50.
J. P. Gong, Soft Matter 2006, 2, 544.
J. P. Gong, G. Kagata, Y. Osada, J. Phys. Chem. B 1999, 103, 6007.
J. P. Gong, Soft Matter 2010, 6, 2583.
J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133.
L. Xu, S. Gao, Q. Guo, C. Wang, Y. Qiao, D. Qiu, Adv. Mater. 2020, 32, 2004579.
X. Zhao, Soft Matter 2014, 10, 672.
P. Jiang, P. Lin, C. Yang, H. Qin, X. Wang, F. Zhou, Chem. Mater. 2020, 32, 9983.
J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155.
Y. Tanaka, R. Kuwabara, Y.-H. Na, T. Kurokawa, J. P. Gong, Y. Osada, J. Phys. Chem. B 2005, 109, 11559.
R. E. Webber, C. Creton, H. R. Brown, J. P. Gong, Macromolecules 2007, 40, 2919.
S. Ahmed, T. Nakajima, T. Kurokawa, Md. A. Haque, J. P. Gong, Polymer 2014, 55, 914.
W. Zhang, X. Liu, J. Wang, J. Tang, J. Hu, T. Lu, Z. Suo, Eng. Fract. Mech. 2018, 187, 74.
S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, X. Zhao, Adv. Mater. 2015, 27, 4035.
E. A. Trowbridge, C. E. Crofts, Biomaterials 1987, 8, 201.
B. P. Pereira, P. W. Lucas, T. Swee-Hin, J. Biomech. 1997, 30, 91.
J. S. Grashow, A. P. Yoganathan, M. S. Sacks, Ann. Biomed. Eng. 2006, 34, 315.
F. Javid, N. Shahmansouri, J. Angeles, R. Mongrain, Biomech. Model. Mechanobiol. 2019, 18, 89.
G. J. Lake, A. G. Thomas, Proc. R. Soc. London Ser. Math. Phys. Sci. 1967, 300, 108.
J. Liu, C. Yang, T. Yin, Z. Wang, S. Qu, Z. Suo, J. Mech. Phys. Solids 2019, 133, 103737.
S. Lin, J. Ni, D. Zheng, X. Zhao, Extreme Mech. Lett. 2021, 48, 101399.
Z. Wang, C. Xiang, X. Yao, P. L.e Floch, J. Mendez, Z. Suo, Proc. Natl. Acad. Sci. USA 2019, 116, 5967.
E. Di Giuseppe, in Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2018.
A. V. Reis, A. R. Fajardo, I. T. A. Schuquel, M. R. Guilherme, G. J. Vidotti, A. F. Rubira, E. C. Muniz, J. Org. Chem. 2009, 74, 3750.
Md. T. I. Mredha, H. H. Le, V. T. Tran, P. Trtik, J. Cui, I. Jeon, Mater. Horiz. 2019, 6, 1504.
M. Pike, W. F. Watson, J. Polym. Sci. 1952, 9, 229.