Making Highly Elastic and Tough Hydrogels from Doughs.

elasticity entanglement hydrogels poly(ethylene glycol) toughness

Journal

Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358

Informations de publication

Date de publication:
Dec 2022
Historique:
revised: 11 09 2022
received: 19 07 2022
pubmed: 21 9 2022
medline: 21 12 2022
entrez: 20 9 2022
Statut: ppublish

Résumé

A hydrogel is often fabricated from preexisting polymer chains by covalently crosslinking them into a polymer network. The crosslinks make the hydrogel swell-resistant but brittle. This conflict is resolved here by making a hydrogel from a dough. The dough is formed by mixing long polymer chains with a small amount of water and photoinitiator. The dough is then homogenized by kneading and annealing at elevated temperatures, during which the crowded polymer chains densely entangle. The polymer chains are then sparsely crosslinked into a polymer network under an ultraviolet lamp, and submerged in water to swell to equilibrium. The resulting hydrogel is both swell-resistant and tough. The hydrogel also has near-perfect elasticity, high strength, high fatigue resistance, and low friction. The method is demonstrated with two widely used polymers, poly(ethylene glycol) and cellulose. These hydrogels have never been made swell-resistant, elastic, and tough before. The method is generally applicable to synthetic and natural polymers, and is compatible with industrial processing technologies, opening doors to the development of sustainable, high-performance hydrogels.

Identifiants

pubmed: 36126085
doi: 10.1002/adma.202206577
doi:

Substances chimiques

Hydrogels 0
Polyethylene Glycols 3WJQ0SDW1A
Polymers 0
Water 059QF0KO0R

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2206577

Subventions

Organisme : MRSEC
ID : DMR-2011754
Organisme : Kwanjeong Educational Foundation

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

I. Dimitrov, C. B. Tsvetanov, Polym. Sci. Compr. Ref. 2012, 4, 551.
F. Haaf, A. Sanner, F. Straub, Polym. J. 1985, 17, 143.
C. M. Hassan, N. A. Peppas, in Biopolymers: PVA Hydrogels Anionic Polymers Nanocomposites, Advances in Polymer Science, Vol. 153, Springer, Berlin/Heidelberg, Germany 2000, pp. 37-65.
M. L. Hallensleben, R. Fuss, F. Mummy, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Germany 2015, https://doi.org/10.1002/14356007.a21_743.pub2.
M. Baumgartner, F. Hartmann, M. Drack, D. Preninger, D. Wirthl, R. Gerstmayr, L. Lehner, G. Mao, R. Pruckner, S. Demchyshyn, L. Reiter, M. Strobel, T. Stockinger, D. Schiller, S. Kimeswenger, F. Greibich, G. Buchberger, E. Bradt, S. Hild, S. Bauer, M. Kaltenbrunner, Nat. Mater. 2020, 19, 1102.
K. Y. Lee, D. J. Mooney, Chem. Rev. 2001, 101, 1869.
S. R. Stauffer, N. A. Peppast, Polymer 1992, 33, 3932.
S. Lin, X. Liu, J. Liu, H. Yuk, H.-C. Loh, G. A. Parada, C. Settens, J. Song, A. Masic, G. H. McKinley, X. Zhao, Sci. Adv. 2019, 5, eaau8528.
M. Hua, S. Wu, Y. Ma, Y. Zhao, Z. Chen, I. Frenkel, J. Strzalka, H. Zhou, X. Zhu, X. He, Nature 2021, 590, 594.
F. Yang, J. Zhao, W. J. Koshut, J. Watt, J. C. Riboh, K. Gall, B. J. Wiley, Adv. Funct. Mater. 2020, 30, 2003451.
J. Herzberger, K. Niederer, H. Pohlit, J. Seiwert, M. Worm, F. R. Wurm, H. Frey, Chem. Rev. 2016, 116, 2170.
C.-C. Lin, K. S. Anseth, Pharm. Res. 2009, 26, 631.
A. J. Vernengo, in Adhesives - Applications and Properties, (Ed: A. Rudawska) InTechOpen, London, UK 2016, pp. 99-136.
P. J. M. Bouten, M. Zonjee, J. Bender, S. T. K. Yauw, H. van Goor, J. C. M. van Hest, R. Hoogenboom, Prog. Polym. Sci. 2014, 39, 1375.
Y. Hou, C. A. Schoener, K. R. Regan, D. Munoz-Pinto, M. S. Hahn, M. A. Grunlan, Biomacromolecules 2010, 11, 648.
J. Cui, M. A. Lackey, A. E. Madkour, E. M. Saffer, D. M. Griffin, S. R. Bhatia, A. J. Crosby, G. N. Tew, Biomacromolecules 2012, 13, 584.
O. Z. Higa, S. O. Rogero, L. D. B. Machado, M. B. Mathor, A. B. Lugao, Radiat. Phys. Chem. 1999, 55, 705.
N. A. Peppas, E. W. Merrill, J. Appl. Polym. Sci. 1977, 21, 1763.
H. J. Kong, E. Wong, D. J. Mooney, Macromolecules 2003, 36, 4582.
A. Khanlari, J. E. Schulteis, T. C. Suekama, M. S. Detamore, S. H. Gehrke, J. Appl. Polym. Sci. 2015, 132, https://doi.org/10.1002/app.42009.
Y. Okumura, K. Ito, Adv. Mater. 2001, 13, 485.
L. Jiang, C. Liu, K. Mayumi, K. Kato, H. Yokoyama, K. Ito, Chem. Mater. 2018, 30, 5013.
C. Liu, N. Morimoto, L. Jiang, S. Kawahara, T. Noritomi, H. Yokoyama, K. Mayumi, K. Ito, Science 2021, 372, 1078.
T. Karino, M. Shibayama, K. Ito, Phys. B (Amsterdam, Neth.) 2006, 385-386, 692.
T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Sasaki, M. Shibayama, U.-i. Chung, Macromolecules 2008, 41, 5379.
Y. Akagi, H. Sakurai, J. P. Gong, U.-i. Chung, T. Sakai, J. Chem. Phys. 2013, 139, 144905.
P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, USA 1953.
P. G. de Gennes, J. Chem. Phys. 1971, 55, 572.
C. Norioka, Y. Inamoto, C. Hajime, A. Kawamura, T. Miyata, NPG Asia Mater. 2021, 13, 34.
J. Kim, G. Zhang, M. Shi, Z. Suo, Science 2021, 374, 212.
M. Rubinstein, R. H. Colby, Polymer Physics, Oxford University Press, Oxford, UK 2003.
S. Wu, J. Polym. Sci., Part B: Polym. Phys. 1989, 27, 723.
M. M. Crowley, F. Zhang, J. J. Koleng, J. W. McGinity, Biomaterials 2002, 23, 4241.
C. Chen, Z. Wang, Z. Suo, Extreme Mech. Lett. 2017, 10, 50.
J. P. Gong, Soft Matter 2006, 2, 544.
J. P. Gong, G. Kagata, Y. Osada, J. Phys. Chem. B 1999, 103, 6007.
J. P. Gong, Soft Matter 2010, 6, 2583.
J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133.
L. Xu, S. Gao, Q. Guo, C. Wang, Y. Qiao, D. Qiu, Adv. Mater. 2020, 32, 2004579.
X. Zhao, Soft Matter 2014, 10, 672.
P. Jiang, P. Lin, C. Yang, H. Qin, X. Wang, F. Zhou, Chem. Mater. 2020, 32, 9983.
J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155.
Y. Tanaka, R. Kuwabara, Y.-H. Na, T. Kurokawa, J. P. Gong, Y. Osada, J. Phys. Chem. B 2005, 109, 11559.
R. E. Webber, C. Creton, H. R. Brown, J. P. Gong, Macromolecules 2007, 40, 2919.
S. Ahmed, T. Nakajima, T. Kurokawa, Md. A. Haque, J. P. Gong, Polymer 2014, 55, 914.
W. Zhang, X. Liu, J. Wang, J. Tang, J. Hu, T. Lu, Z. Suo, Eng. Fract. Mech. 2018, 187, 74.
S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, X. Zhao, Adv. Mater. 2015, 27, 4035.
E. A. Trowbridge, C. E. Crofts, Biomaterials 1987, 8, 201.
B. P. Pereira, P. W. Lucas, T. Swee-Hin, J. Biomech. 1997, 30, 91.
J. S. Grashow, A. P. Yoganathan, M. S. Sacks, Ann. Biomed. Eng. 2006, 34, 315.
F. Javid, N. Shahmansouri, J. Angeles, R. Mongrain, Biomech. Model. Mechanobiol. 2019, 18, 89.
G. J. Lake, A. G. Thomas, Proc. R. Soc. London Ser. Math. Phys. Sci. 1967, 300, 108.
J. Liu, C. Yang, T. Yin, Z. Wang, S. Qu, Z. Suo, J. Mech. Phys. Solids 2019, 133, 103737.
S. Lin, J. Ni, D. Zheng, X. Zhao, Extreme Mech. Lett. 2021, 48, 101399.
Z. Wang, C. Xiang, X. Yao, P. L.e Floch, J. Mendez, Z. Suo, Proc. Natl. Acad. Sci. USA 2019, 116, 5967.
E. Di Giuseppe, in Reference Module in Earth Systems and Environmental Sciences, Elsevier,  2018.
A. V. Reis, A. R. Fajardo, I. T. A. Schuquel, M. R. Guilherme, G. J. Vidotti, A. F. Rubira, E. C. Muniz, J. Org. Chem. 2009, 74, 3750.
Md. T. I. Mredha, H. H. Le, V. T. Tran, P. Trtik, J. Cui, I. Jeon, Mater. Horiz. 2019, 6, 1504.
M. Pike, W. F. Watson, J. Polym. Sci. 1952, 9, 229.

Auteurs

Guodong Nian (G)

John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA.

Junsoo Kim (J)

John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA.

Xianyang Bao (X)

John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA.
Centre for Polymer from Renewable Resource, SFSE, South China University of Technology, Guangzhou, 510640, China.

Zhigang Suo (Z)

John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA.

Articles similaires

Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil

Classifications MeSH