Test-retest reproducibility of human brain multi-slice
human brain
lipid regularization
magnetic resonance imaging
ultra-high field strengths
whole-brain MRSI
Journal
Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245
Informations de publication
Date de publication:
Jan 2023
Jan 2023
Historique:
revised:
28
07
2022
received:
01
02
2022
accepted:
02
08
2022
pubmed:
22
9
2022
medline:
2
11
2022
entrez:
21
9
2022
Statut:
ppublish
Résumé
This study analyzes the effects of retrospective lipid suppression, a simulated macromolecular prior knowledge and different spline baseline stiffness values on 9.4T multi-slice proton FID-MRSI data spanning the whole cerebrum of human brain and the reproducibility of respective metabolite ratio to total creatine (/tCr) maps for 10 brain metabolites. Measurements were performed twice on 5 volunteers using a short TR and TE FID MRSI 2D sequence at 9.4T. The effects of retrospective lipid L2-regularization, macromolecular spectrum and different LCModel baseline flexibilities on SNR, FWHM, fitting residual, Cramér-Rao lower bound, and metabolite ratio maps were investigated. Intra-subject, inter-session coefficient of variation and the test-retest reproducibility of the mean metabolite ratios (/tCr) of each slice was calculated. Transversal, sagittal, and coronal slices of many metabolite ratio maps correspond to the anatomically expected concentration relations in gray and white matter for the majority of the cerebrum when using a flexible baseline in LCModel fit. Results from the second measurements of the same subjects show that slice positioning and data quality correlate significantly to the first measurement. L2-regularization provided effective suppression of lipid-artifacts, but should be avoided if no artifacts are detected. Reproducible concentration ratio maps (/tCr) for 4 metabolites (total choline, N-acetylaspartate, glutamate, and myoinositol) spanning the majority of the cerebrum and 6 metabolites (N-acetylaspartylglutamate, γ-aminobutyric acid, glutathione, taurine, glutamine, and aspartate) covering 32 mm in the upper part of the brain were acquired at 9.4T using multi-slice FID MRSI with retrospective lipid suppression, a macromolecular spectrum and a flexible LCModel baseline.
Substances chimiques
Protons
0
Macromolecular Substances
0
Lipids
0
Receptors, Antigen, T-Cell
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
11-28Informations de copyright
© 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Références
Maudsley AA, Andronesi OC, Barker PB, et al. Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations. NMR Biomed. 2020;34:e4309.
Ding X-Q, Maudsley AA, Sabati M, Sheriff S, Dellani PR, Lanfermann H. Reproducibility and reliability of short-TE whole-brain MR spectroscopic imaging of human brain at 3T. Magn Reson Med. 2015;73:921-928.
Govind V, Gold S, Kaliannan K, et al. Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits. J Neurotrauma. 2010;27:483-496.
Klauser A, Klauser P, Grouiller F, Courvoisier S, Lazeyras F. Whole-brain high-resolution metabolite mapping with 3D compressed-sensing SENSE low-rank 1H FID-MRSI. NMR Biomed. 2022;35:1-14.
Maudsley AA, Domenig C, Govind V, et al. Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med. 2009;61:548-559.
Maudsley AA, Domenig C, Sheriff S. Reproducibility of serial whole-brain MR spectroscopic imaging. NMR Biomed. 2009;23:n/a-n/a:256.
Moser P, Eckstein K, Hingerl L, et al. Intra-session and inter-subject variability of 3D-FID-MRSI using single-echo volumetric EPI navigators at 3T. Magn Reson Med. 2020;83:1920-1929.
Veenith TV, Mada M, Carter E, et al. Comparison of inter subject variability and reproducibility of whole brain proton spectroscopy. PLoS One. 2014;9:1-23.
Zhang Y, Taub E, Salibi N, et al. Comparison of reproducibility of single voxel spectroscopy and whole-brain magnetic resonance spectroscopy imaging at 3T. NMR Biomed. 2018;31:e3898.
Gu M, Kim DH, Mayer D, Sullivan EV, Pfefferbaum A, Spielman DM. Reproducibility study of whole-brain 1H spectroscopic imaging with automated quantification. Magn Reson Med. 2008;60:542-547.
Motyka S, Moser P, Hingerl L, et al. The influence of spatial resolution on the spectral quality and quantification accuracy of whole-brain MRSI at 1.5T, 3T, 7T, and 9.4T. Magn Reson Med. 2019;82:551-565.
Esmaeili M, Strasser B, Bogner W, Moser P, Wang Z, Andronesi OC. Whole-slab 3D MR spectroscopic imaging of the human brain with spiral-out-in sampling at 7T. J Magn Reson Imaging. 2021;53:1237-1250.
Hangel G, Spurny-Dworak B, Lazen P, et al. Inter-subject stability and regional concentration estimates of 3D-FID-MRSI in the human brain at 7T. NMR Biomed. 2021;34:1-20.
Hingerl L, Strasser B, Moser P, et al. Clinical high-resolution 3D-MR spectroscopic imaging of the human brain at 7T. Invest Radiol. 2020;55:239-248.
Klauser A, Strasser B, Thapa B, Lazeyras F, Andronesi O. Achieving high-resolution 1H-MRSI of the human brain with compressed-sensing and low-rank reconstruction at 7 Tesla. J Magn Reson. 2021;331:107048.
Moser P, Bogner W, Hingerl L, et al. Non-Cartesian GRAPPA and coil combination using interleaved calibration data-application to concentric-ring MRSI of the human brain at 7T. Magn Reson Med. 2019;82:1587-1603.
Nassirpour S, Chang P, Henning A. Whole brain high resolution metabolite mapping using 1H FID MRSI with slice-wise B0 shim updating at 9.4T. Joint Annual Meeting ISMRM-ESMRMB 2018, Paris, France; 2018. Meeting abstract number: 0619.
Heckova E, Považan M, Strasser B, et al. Effects of different macromolecular models on reproducibility of FID-MRSI at 7T. Magn Reson Med. 2020;83:12-21.
Wilson M. Adaptive baseline fitting for 1H MR spectroscopy analysis. Magn Reson Med. 2021;85:13-29.
Giapitzakis I, Borbath T, Murali-Manohar S, Avdievich N, Henning A. Investigation of the influence of macromolecules and spline baseline in the fitting model of human brain spectra at 9.4T. Magn Reson Med. 2019;81:746-758.
Lin A, Andronesi O, Bogner W, et al. Minimum reporting standards for in vivo magnetic resonance spectroscopy (MRSinMRS): Experts' consensus recommendations. NMR Biomed. 2021;34:e4484.
Avdievich NI, Giapitzakis I-A, Bause J, Shajan G, Scheffler K, Henning A. Double-row 18-loop transceive-32-loop receive tight-fit array provides for whole-brain coverage, high transmit performance, and SNR improvement near the brain center at 9.4T. Magn Reson Med. 2019;81:3392-3405.
Henning A, Fuchs A, Murdoch JB, Boesiger P. Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for 1H-MRSI of the human brain at 7T with minimal signal loss. NMR Biomed. 2009;22:683-696.
Bogner W, Gruber S, Trattnig S, Chmelik M. High-resolution mapping of human brain metabolites by free induction decay 1H MRSI at 7T. NMR Biomed. 2012;25:873-882.
Nassirpour S, Chang P, Henning A. High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T. Neuroimage. 2018;168:211-221.
Chang P, Nassirpour S, Avdievitch N, Henning A. Non-water-suppressed 1H FID-MRSI at 3T and 9.4T. Magn Reson Med. 2018;80:442-451.
Nassirpour S, Chang P, Avdievitch N, Henning A. Compressed sensing for high-resolution nonlipid suppressed 1H FID MRSI of the human brain at 9.4T. Magn Reson Med. 2018;80:2311-2325.
Chang P, Nassirpour S, Henning A. Compressed sensing for 1H MRSI in the human brainat 9.4T. 34th Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB 2017), Barcelona, Spain; 2017:S485-S486.
Chang P, Nassirpour S, Henning A. Highly accelerated (R=14) water reference Acquisition for High Resolution 1H MRSI using compressed sensing. Joint Annual Meeting ISMRM-ESMRMB 2018, Paris, France; 2018:1328.
Bilgic B, Chatnuntawech I, Fan AP, et al. Fast image reconstruction with L2-regularization. J Magn Reson Imaging. 2014;40:181-191.
Hansen PC. The L-curve and its use in the numerical treatment of inverse problems. Computational Inverse Problems in Electrocardiology. WIT Press; 2000:119-142.
Provencher SW. Estimation of metabolite concentrations from localizedin vivo proton NMR spectra. Magn Reson Med. 1993;30:672-679.
Soher BJ, Semanchuk P, Todd D, Steinberg J, Young K. VeSPA: integrated applications for RF pulse design, spectral simulation and MRS data analysis. Proc. Intl. Soc. Mag. Reson. Med. 2011;19:1410. https://cds.ismrm.org/protected/11MProceedings/PDFfiles/1410.pdf
Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13:129-153.
Govind V, Young K, Maudsley AA. Corrigendum: proton NMR chemical shifts and coupling constants for brain metabolites. Govindaraju V, Young K, Maudsley AA, NMR biomed . 2000; 13: 129-153. NMR Biomed. 2015;28:923-924.
Near J, Evans CJ, Puts NAJ, Barker PB, Edden RAE. J -difference editing of gamma-aminobutyric acid (GABA): simulated and experimental multiplet patterns. Magn Reson Med. 2013;70:1183-1191.
Marjańska M, Terpstra M. Influence of fitting approaches in LCModel on MRS quantification focusing on age-specific macromolecules and the spline baseline. NMR Biomed. 2019;34:1-9.
Wright AM, Murali-Manohar S, Borbath T, Avdievich NI, Henning A. Relaxation-corrected macromolecular model enables determination of 1H longitudinal T1-relaxation times and concentrations of human brain metabolites at 9.4T. Magn Reson Med. 2022;87:33-49.
Murali-Manohar S, Wright AM, Borbath T, Avdievich NI, Henning A. A novel method to measure T1-relaxation times of macromolecules and quantification of the macromolecular resonances. Magn Reson Med. 2021;85:601-614.
Murali-Manohar S, Borbath T, Wright AM, Soher B, Mekle R, Henning A. T2 relaxation times of macromolecules and metabolites in the human brain at 9.4T. Magn Reson Med. 2020;84:542-558.
Cudalbu C, Behar KL, Bhattacharyya PK, et al. Contribution of macromolecules to brain 1H MR spectra: Experts' consensus recommendations. NMR Biomed. 2021;34:e4393.
Nassirpour S, Chang P, Henning A. MultiNet PyGRAPPA: multiple neural networks for reconstructing variable density GRAPPA (a 1H FID MRSI study). Neuroimage. 2018;183:336-345.
Strasser B, Považan M, Hangel G, et al. (2 + 1)D-CAIPIRINHA accelerated MR spectroscopic imaging of the brain at 7T. Magn Reson Med. 2017;78:429-440.
Hangel G, Strasser B, Považan M, et al. A comparison of lipid suppression by double inversion recovery, L1- and L2-regularisation for high resolution MRSI in the brain at 7T. ISMRM 24th Annual Meeting & Exhibition. International Society of Magnetic Resonance in Medicine; 2016:2354.
Hangel G, Strasser B, Považan M, et al. Ultra-high resolution brain metabolite mapping at 7T by short-TR Hadamard-encoded FID-MRSI. Neuroimage. 2018;168:199-210.
Moser P, Hingerl L, Strasser B, et al. Whole-slice mapping of GABA and GABA + at 7T via adiabatic MEGA-editing, real-time instability correction, and concentric circle readout. Neuroimage. 2019;184:475-489.
Lin L, Považan M, Berrington A, Chen Z, Barker PB. Water removal in MR spectroscopic imaging with L2 regularization. Magn Reson Med. 2019;82:1278-1287.
Deelchand DK, Marjańska M, Hodges JS, Terpstra M. Sensitivity and specificity of human brain glutathione concentrations measured using short-TE 1H MRS at 7T. NMR Biomed. 2016;29:600-606.
Terpstra M, Ugurbil K, Tkac I. Noninvasive quantification of human brain ascorbate concentration using 1H NMR spectroscopy at 7T. NMR Biomed. 2010;23:227-232.
Giapitzakis I-A, Avdievich N, Henning A. Characterization of macromolecular baseline of human brain using metabolite cycled semi-LASER at 9.4T. Magn Reson Med. 2018;80:462-473.
Simicic D, Rackayova V, Xin L, et al. In vivo macromolecule signals in rat brain 1H-MR spectra at 9.4T: parametrization, spline baseline estimation, and T2 relaxation times. Magn Reson Med. 2021;86:2384-2401.
Bhogal AA, Broeders TAA, Morsinkhof L, et al. Lipid-suppressed and tissue-fraction corrected metabolic distributions in human central brain structures using 2D 1H magnetic resonance spectroscopic imaging at 7T. Brain Behav. 2020;10:e01852.
Považan M, Strasser B, Hangel G, et al. Simultaneous mapping of metabolites and individual macromolecular components via ultra-short acquisition delay 1H MRSI in the brain at 7T. Magn Reson Med. 2018;79:1231-1240.
Považan M, Hangel G, Strasser B, et al. Mapping of brain macromolecules and their use for spectral processing of 1H-MRSI data with an ultra-short acquisition delay at 7T. Neuroimage. 2015;121:126-135.
Wright AM, Murali-Manohar S, Ziegs T, Henning A. Relaxation corrected simulated MM model for improved fitting and quantification of 1H FID MRSI data. 2021 ISMRM & SMRT Annual Meeting & Exhibition. ISMRM; 2021:2007. https://index.mirasmart.com/ISMRM2021/PDFfiles/2007.html
Pouwels PJW, Frahm J. Differential distribution of NAA and NAAG in human brain as determined by quantitative localized proton MRS. NMR Biomed. 1997;10:73-78.
Jensen JE, Frederick Bde B, Renshaw PF. Grey and white matter GABA level differences in the human brain using two-dimensional, J-resolved spectroscopic imaging. NMR Biomed. 2005;18:570-576.
Mullins PG, Mcgonigle DJ, O'gorman RL, et al. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage. 2014;86:43-52.
Pouwels PJW, Brockmann K, Kruse B, et al. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res. 1999;46:474-485.
Srinivasan R, Ratiney H, Hammond-Rosenbluth KE, Pelletier D, Nelson SJ. MR spectroscopic imaging of glutathione in the white and gray matter at 7T with an application to multiple sclerosis. Magn Reson Imaging. 2010;28:163-170.
Choi IY, Lee P. Doubly selective multiple quantum chemical shift imaging and T1 relaxation time measurement of glutathione (GSH) in the human brain in vivo. NMR Biomed. 2013;26:28-34.
Andronesi OC, Nicholson K, Jafari-Khouzani K, et al. Imaging neurochemistry and brain structure tracks clinical decline and mechanisms of ALS in patients. Front Neurol. 2020;11:590573.
Wright AM, Murali-Manohar S, Henning A. Quantitative T1-Relaxation Corrected Metabolite Mapping of 12 Metabolites in the Human Brain at 9.4T. bioRxiv; 2021. doi:10.1101/2021.12.24.474092
Birch R, Peet AC, Dehghani H, Wilson M. Influence of macromolecule baseline on 1H MR spectroscopic imaging reproducibility. Magn Reson Med. 2017;77:34-43.
Hnilicová P, Považan M, Strasser B, et al. Spatial variability and reproducibility of GABA-edited MEGA-LASER 3D-MRSI in the brain at 3T. NMR Biomed. 2016;29:1656-1665.
Penner J, Bartha R. Semi-LASER 1H MR spectroscopy at 7 Tesla in human brain: metabolite quantification incorporating subject-specific macromolecule removal. Magn Reson Med. 2015;74:4-12.
Snoussi K, Gillen JS, Horska A, et al. Comparison of brain gray and white matter macromolecule resonances at 3 and 7 Tesla. Magn Reson Med. 2015;74:607-613.
Inglese M, Spindler M, Babb JS, Sunenshine P, Law M, Gonen O. Field, coil, and echo-time influence on sensitivity and reproducibility of brain proton MR spectroscopy. Am J Neuroradiol. 2006;27:684-688.
Wijtenburg SA, Rowland LM, Oeltzschner G, Barker PB, Workman CI, Smith GS. Reproducibility of brain MRS in older healthy adults at 7T. NMR Biomed. 2019;32:e4040.
Wijtenburg SA, Rowland LM, Edden RAE, Barker PB. Reproducibility of brain spectroscopy at 7T using conventional localization and spectral editing techniques. J Magn Reson Imaging. 2013;38:460-467.
Terpstra M, Cheong I, Lyu T, et al. Test-retest reproducibility of neurochemical profiles with short-echo, single-voxel MR spectroscopy at 3T and 7T. Magn Reson Med. 2016;76:1083-1091.
Hammen T, Stadlbauer A, Tomandl B, et al. Short TE single-voxel 1H-MR spectroscopy of hippocampal structures in healthy adults at 1.5 Tesla-how reproducible are the results? NMR Biomed. 2005;18:195-201.
Venkatraman TN, Hamer RM, Perkins DO, Song AW, Lieberman JA, Steen RG. Single-voxel 1H PRESS at 4.0T: precision and variability of measurements in anterior cingulate and hippocampus. NMR Biomed. 2006;19:484-491.
Saleh MG, Near J, Alhamud A, Robertson F, van der Kouwe AJW, Meintjes EM. Reproducibility of macromolecule suppressed GABA measurement using motion and shim navigated MEGA-SPECIAL with LCModel, jMRUI and GANNET. MAGMA. 2016;29:863-874.
Geurts JJG, Barkhof F, Castelijns JA, Uitdehaag BMJ, Polman CH, Pouwels PJW. Quantitative 1H-MRS of healthy human cortex, hippocampus, and thalamus: metabolite concentrations, quantification precision, and reproducibility. J Magn Reson Imaging. 2004;20:366-371.
Prinsen H, de Graaf RA, Mason GF, Pelletier D, Juchem C. Reproducibility measurement of glutathione, GABA, and glutamate: towards in vivo neurochemical profiling of multiple sclerosis with MR spectroscopy at 7T. J Magn Reson Imaging. 2017;45:187-198.
Bogner W, Otazo R, Henning A. Accelerated MR spectroscopic imaging - a review of current and emerging techniques. NMR Biomed. 2021;34:e4314.
Juchem C, Cudalbu C, Graaf RA, et al. B0 shimming for in vivo magnetic resonance spectroscopy: Experts' consensus recommendations. NMR Biomed. 2020;34:e4350.