A single hole spin with enhanced coherence in natural silicon.


Journal

Nature nanotechnology
ISSN: 1748-3395
Titre abrégé: Nat Nanotechnol
Pays: England
ID NLM: 101283273

Informations de publication

Date de publication:
Oct 2022
Historique:
received: 21 01 2022
accepted: 18 07 2022
pubmed: 23 9 2022
medline: 23 9 2022
entrez: 22 9 2022
Statut: ppublish

Résumé

Semiconductor spin qubits based on spin-orbit states are responsive to electric field excitations, allowing for practical, fast and potentially scalable qubit control. Spin electric susceptibility, however, renders these qubits generally vulnerable to electrical noise, which limits their coherence time. Here we report on a spin-orbit qubit consisting of a single hole electrostatically confined in a natural silicon metal-oxide-semiconductor device. By varying the magnetic field orientation, we reveal the existence of operation sweet spots where the impact of charge noise is minimized while preserving an efficient electric-dipole spin control. We correspondingly observe an extension of the Hahn-echo coherence time up to 88 μs, exceeding by an order of magnitude existing values reported for hole spin qubits, and approaching the state-of-the-art for electron spin qubits with synthetic spin-orbit coupling in isotopically purified silicon. Our finding enhances the prospects of silicon-based hole spin qubits for scalable quantum information processing.

Identifiants

pubmed: 36138200
doi: 10.1038/s41565-022-01196-z
pii: 10.1038/s41565-022-01196-z
pmc: PMC9576591
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1072-1077

Subventions

Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 759388
Organisme : EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
ID : 951852

Informations de copyright

© 2022. The Author(s).

Références

Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Physical Review A 57, 120–126 (1998).
Burkard, G., Ladd, T. D., Nichol, J. M., Pan, A. & Petta, J. R. Semiconductor spin qubits. Preprint at https://arxiv.org/abs/2112.08863 (2021).
Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).
doi: 10.1038/nnano.2014.216
Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).
doi: 10.1038/s41565-017-0014-x
Huang, W. et al. Fidelity benchmarks for two-qubit gates in silicon. Nature 569, 532–536 (2019).
doi: 10.1038/s41586-019-1197-0
Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338–342 (2022).
doi: 10.1038/s41586-021-04182-y
Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).
doi: 10.1038/s41586-021-04273-w
Mills, A. R. et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99%. Sci. Adv. 8, eabn5130 (2022).
doi: 10.1126/sciadv.abn5130
Takeda, K. et al. Quantum tomography of an entangled three-qubit state in silicon. Nat. Nanotechnol. 16, 965–969 (2021).
doi: 10.1038/s41565-021-00925-0
Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).
doi: 10.1038/s41586-021-03332-6
Maurand, R. et al. A CMOS silicon spin qubit. Nat. Commun. 7, 13575 (2016).
Zwerver, A. M. J. et al. Qubits made by advanced semiconductor manufacturing. Nat. Electron. 5, 184–190 (2022).
doi: 10.1038/s41928-022-00727-9
Gonzalez-Zalba, M. F. et al. Scaling silicon-based quantum computing using CMOS technology. Nat. Electron. 4, 872–884 (2021).
doi: 10.1038/s41928-021-00681-y
Vahapoglu, E. et al. Single-electron spin resonance in a nanoelectronic device using a global field. Sci. Adv. 7, eabg9158 (2021).
doi: 10.1126/sciadv.abg9158
Camenzind, L. C. et al. A hole spin qubit in a fin field-effect transistor above 4 kelvin. Nat. Electron. 5, 178–183 (2022).
doi: 10.1038/s41928-022-00722-0
Watzinger, H. et al. A germanium hole spin qubit. Nat. Commun. 9, 3902 (2018).
doi: 10.1038/s41467-018-06418-4
Jirovec, D. et al. A singlet-triplet hole spin qubit in planar Ge. Nat. Mater. 20, 1106–1112 (2021).
doi: 10.1038/s41563-021-01022-2
Froning, F. N. M. et al. Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality. Nat. Nanotechnol. 16, 308–312 (2021).
doi: 10.1038/s41565-020-00828-6
Scappucci, G. et al. The germanium quantum information route. Nat. Rev. Mater. 6, 926–243 (2020).
doi: 10.1038/s41578-020-00262-z
Malkoc, O., Stano, P. & Loss, D. Charge-noise induced dephasing in silicon hole-spin qubits. Preprint at https://arxiv.org/abs/2201.06181 (2022).
Bosco, S., Hetényi, B. & Loss, D. Hole spin qubits in Si FinFETs with fully tunable spin-orbit coupling and sweet spots for charge noise. PRX Quantum 2, 010348 (2021).
doi: 10.1103/PRXQuantum.2.010348
Wang, Z. et al. Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits. npj Quantum Inf. 7, 54 (2021).
doi: 10.1038/s41534-021-00386-2
Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).
doi: 10.1038/s41586-021-03332-6
Chatterjee, A. et al. Semiconductor qubits in practice. Nat. Rev. Phys. 3, 157–177 (2021).
doi: 10.1038/s42254-021-00283-9
Voisin, B. et al. Few-electron edge-state quantum dots in a silicon nanowire field-effect transistor. Nano Lett. 14, 2094–2098 (2014).
doi: 10.1021/nl500299h
Venitucci, B., Bourdet, L., Pouzada, D. & Niquet, Y.-M. Electrical manipulation of semiconductor spin qubits within the g-matrix formalism. Phys. Rev. B 98, 155319 (2018).
doi: 10.1103/PhysRevB.98.155319
Kloeffel, C., Rančić, M. J. & Loss, D. Direct Rashba spin–orbit interaction in Si and Ge nanowires with different growth directions. Phys. Rev. B 97, 235422 (2018).
doi: 10.1103/PhysRevB.97.235422
Michal, V. P., Venitucci, B. & Niquet, Y.-M. Longitudinal and transverse electric field manipulation of hole spin-orbit qubits in one-dimensional channels. Phys. Rev. B 103, 045305 (2021).
doi: 10.1103/PhysRevB.103.045305
Zwanenburg, F. A., van Rijmenam, C. E. W. M., Fang, Y., Lieber, C. M. & Kouwenhoven, L. P. Spin states of the first four holes in a silicon nanowire quantum dot. Nano Lett. 9, 1071–1079 (2009).
doi: 10.1021/nl803440s
Ares, N. et al. Nature of tunable hole g factors in quantum dots. Phys. Rev. Lett. 110, 046602 (2013).
doi: 10.1103/PhysRevLett.110.046602
Bogan, A. et al. Consequences of spin–orbit coupling at the single hole level: spin–flip tunneling and the anisotropic g factor. Phys. Rev. Lett. 118, 1–5 (2017).
doi: 10.1103/PhysRevLett.118.167701
Liles, S. D. et al. Electrical control of the g tensor of the first hole in a silicon MOS quantum dot. Phys. Rev. B 104, 235303 (2021).
doi: 10.1103/PhysRevB.104.235303
Tanttu, T. et al. Controlling spin-orbit interactions in silicon quantum dots using magnetic field direction. Phys. Rev. X 9, 021028 (2019).
Stano, P. & Loss, D. Review of performance metrics of spin qubits in gated semiconducting nanostructures. Preprint at https://arxiv.org/abs/2107.06485 (2021).
Michal, V. P. et al. Tunable hole spin–photon interaction based on g-matrix modulation. Preprint at https://arxiv.org/abs/2204.00404 (2022).
Delbecq, M. R. et al. Quantum dephasing in a gated GaAs triple quantum dot due to nonergodic noise. Phys. Rev. Lett. 116, 046802 (2016).
doi: 10.1103/PhysRevLett.116.046802
Chanrion, E. et al. Charge detection in an array of CMOS quantum dots. Phys. Rev. Appl. 14, 024066 (2020).
Ansaloni, F. et al. Single-electron operations in a foundry-fabricated array of quantum dots. Nat. Commun. 11, 6399 (2020).
doi: 10.1038/s41467-020-20280-3
Schaal, S. et al. Fast gate-based readout of silicon quantum dots using josephson parametric amplification. Phys. Rev. Lett. 124, 067701 (2020).
doi: 10.1103/PhysRevLett.124.067701
Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).
doi: 10.1038/nature02693
Hendrickx, N. W., Franke, D. P., Sammak, A., Scappucci, G. & Veldhorst, M. Fast two-qubit logic with holes in germanium. Nature 577, 487–491 (2020).
doi: 10.1038/s41586-019-1919-3

Auteurs

N Piot (N)

Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.

B Brun (B)

Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France. boris.brun-barriere@cea.fr.

V Schmitt (V)

Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.

S Zihlmann (S)

Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.

V P Michal (VP)

Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, Grenoble, France.

A Apra (A)

Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.

J C Abadillo-Uriel (JC)

Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, Grenoble, France.

X Jehl (X)

Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France.

B Bertrand (B)

Université Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France.

H Niebojewski (H)

Université Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France.

L Hutin (L)

Université Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France.

M Vinet (M)

Université Grenoble Alpes, CEA, LETI, Minatec Campus, Grenoble, France.

M Urdampilleta (M)

Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France.

T Meunier (T)

Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, France.

Y-M Niquet (YM)

Université Grenoble Alpes, CEA, IRIG-MEM-L_Sim, Grenoble, France.

R Maurand (R)

Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France. romain.maurand@cea.fr.

S De Franceschi (S)

Université Grenoble Alpes, CEA, Grenoble INP, IRIG-Pheliqs, Grenoble, France. silvano.defranceschi@cea.fr.

Classifications MeSH