Seizure count forecasting to aid diagnostic testing in epilepsy.
Bayesian inference
count forecasting
epilepsy monitoring unit
responsive neurostimulation
seizure prediction
Journal
Epilepsia
ISSN: 1528-1167
Titre abrégé: Epilepsia
Pays: United States
ID NLM: 2983306R
Informations de publication
Date de publication:
12 2022
12 2022
Historique:
revised:
18
09
2022
received:
11
03
2022
accepted:
19
09
2022
pubmed:
24
9
2022
medline:
15
12
2022
entrez:
23
9
2022
Statut:
ppublish
Résumé
Epilepsy monitoring unit (EMU) admissions are critical for presurgical evaluation of drug-resistant epilepsy but may be nondiagnostic if an insufficient number of seizures are recorded. Seizure forecasting algorithms have shown promise for estimating the likelihood of seizures as a binary event in individual patients, but methods to predict how many seizures will occur remain elusive. Such methods could increase the diagnostic yield of EMU admissions and help patients mitigate seizure-related morbidity. Here, we evaluated the performance of a state-space method that uses prior seizure count data to predict future counts. A Bayesian negative-binomial dynamic linear model (DLM) was developed to forecast daily electrographic seizure counts in 19 patients implanted with a responsive neurostimulation (RNS) device. Holdout validation was used to evaluate performance in predicting the number of electrographic seizures for forecast horizons ranging 1-7 days ahead. One-day-ahead prediction of the number of electrographic seizures using a negative-binomial DLM resulted in improvement over chance in 73.1% of time segments compared to a random chance forecaster and remained >50% for forecast horizons of up to 7 days. Superior performance (mean error = .99) was obtained in predicting the number of electrographic seizures in the next day compared to three traditional methods for count forecasting (integer-valued generalized autoregressive conditional heteroskedasticity model or INGARCH, 1.10; Croston, 1.06; generalized linear autoregressive moving average model or GLARMA, 2.00). Number of electrographic seizures in the preceding day and laterality of electrographic pattern detections had highest predictive value, with greater number of electrographic seizures and RNS magnet swipes in the preceding day associated with a higher number of electrographic seizures the next day. This study demonstrates that DLMs can predict the number of electrographic seizures a patient will experience days in advance with above chance accuracy. This study represents an important step toward the translation of seizure forecasting methods into the optimization of EMU admissions.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
3156-3167Subventions
Organisme : NINDS NIH HHS
ID : R25 NS070680
Pays : United States
Organisme : NLM NIH HHS
ID : T15 LM007093
Pays : United States
Informations de copyright
© 2022 International League Against Epilepsy.
Références
Ghougassian DF, D'Souza W, Cook MJ, O'Brien TJ. Evaluating the utility of inpatient video-EEG monitoring. Epilepsia. 2004;45(8):928-32.
Haneef Z, Stern J, Dewar S, Engel J. Referral pattern for epilepsy surgery after evidence-based recommendations: a retrospective study. Neurology. 2010;75(8):699-704.
Moseley BD, Dewar S, Haneef Z, Stern JM. How long is long enough? The utility of prolonged inpatient video EEG monitoring. Epilepsy Res. 2015;109:9-12.
Brunnhuber F, Slater J, Goyal S, Amin D, Thorvardsson G, Freestone DR, et al. Past, present and future of home video-electroencephalographic telemetry: a review of the development of in-home video-electroencephalographic recordings. Epilepsia. 2020;61(Suppl 1):S3-10.
Smart O, Rolston JD, Epstein CM, Gross RE. Hippocampal seizure-onset laterality can change over long timescales: a same-patient observation over 500 days. Epilepsy Behav Case Rep. 2013;1:56-61.
King-Stephens D, Mirro E, Weber PB, Laxer KD, Van Ness PC, Salanova V, et al. Lateralization of mesial temporal lobe epilepsy with chronic ambulatory electrocorticography. Epilepsia. 2015;56(6):959-67.
Chiang S, Fan JM, Rao VR. Bilateral temporal lobe epilepsy: how many seizures are required in chronic ambulatory electrocorticography to estimate the laterality ratio? Epilepsia. 2022;63(1):199-208.
Goldenholz DM, Goldenholz SR, Romero J, Moss R, Sun H, Westover B. Development and validation of forecasting next reported seizure using e-diaries. Ann Neurol. 2020;88(3):588-95.
Karoly PJ, Cook MJ, Maturana M, Nurse ES, Payne D, Brinkmann BH, et al. Forecasting cycles of seizure likelihood. Epilepsia. 2020;61(4):776-86.
Proix T, Truccolo W, Leguia MG, Tcheng TK, King-Stephens D, Rao VR, et al. Forecasting seizure risk in adults with focal epilepsy: a development and validation study. Lancet Neurol. 2021;20(2):127-35.
Nejedly P, Kremen V, Sladky V, Nasseri M, Guragain H, Klimes P, et al. Deep-learning for seizure forecasting in canines with epilepsy. J Neural Eng. 2019;16(3):036031.
Brinkmann BH, Wagenaar J, Abbot D, Adkins P, Bosshard SC, Chen M, et al. Crowdsourcing reproducible seizure forecasting in human and canine epilepsy. Brain. 2016;139(6):1713-22.
Privitera M, Haut SR, Lipton RB, McGinley JS, Cornes S. Seizure self-prediction in a randomized controlled trial of stress management. Neurology. 2019;93(22):e2021-31.
Chiang S, Goldenholz DM, Moss R, Rao VR, Haneef Z, Theodore WH, et al. Prospective validation study of an epilepsy seizure risk system for outpatient evaluation. Epilepsia. 2020;61(1):29-38.
Ghaderyan P, Abbasi A, Sedaaghi MH. An efficient seizure prediction method using KNN-based undersampling and linear frequency measures. J Neurosci Methods. 2014;232:134-42.
Stirling RE, Cook MJ, Grayden DB, Karoly PJ. Seizure forecasting and cyclic control of seizures. Epilepsia. 2021;62(Suppl 1):S2-14.
Nasseri M, Pal Attia T, Joseph B, Gregg NM, Nurse ES, Viana PF, et al. Ambulatory seizure forecasting with a wrist-worn device using long-short term memory deep learning. Sci Rep. 2021;11(1):21935.
Karoly PJ, Eden D, Nurse ES, Cook MJ, Taylor J, Dumanis S, et al. Cycles of self-reported seizure likelihood correspond to yield of diagnostic epilepsy monitoring. Epilepsia. 2021;62(2):416-25.
Struck AF, Cole AJ, Cash SS, Westover MB. The number of seizures needed in the EMU. Epilepsia. 2015;56(11):1753-9.
Skarpaas TL, Jarosiewicz B, Morrell MJ. Brain-responsive neurostimulation for epilepsy (RNS® System). Epilepsy Res. 2019;153:68-70.
Baud MO, Kleen JK, Mirro EA, Andrechak JC, King-Stephens D, Chang EF, et al. Multi-day rhythms modulate seizure risk in epilepsy. Nat Commun. 2018;9(1):88.
van Buuren S, Groothuis-Oudshoorn CG. mice: multivariate imputation by chained equations in R. J Stat Softw. 2011;45:1-67.
Ferland R, Latour A, Oraichi D. Integer-valued GARCH process. J Time Ser Anal. 2006;27(6):923-42.
Croston JD. Forecasting and stock control for intermittent demands. Oper Res Q. 1970-1977;23(3):289-303.
Dunsmuir WTM. Generalized linear autoregressive moving average models. Abingdon, UK: Routledge Handbooks Online; 2015.
Hyndman RJ, Koehler AB. Another look at measures of forecast accuracy. Int J Forecast. 2006;22(4):679-88.
Winterhalder M, Schelter B, Maiwald T, Brandt A, Schad A, Schulze-Bonhage A, et al. Spatio-temporal patient-individual assessment of synchronization changes for epileptic seizure prediction. Clin Neurophysiol. 2006;117(11):2399-413.
Wang S, Chaovalitwongse WA, Wong S. Online seizure prediction using an adaptive learning approach. IEEE Trans Knowl Data Eng. 2013;25(12):2854-66.
Xu Y, Nguyen D, Mohamed A, Carcel C, Li Q, Kutlubaev MA, et al. Frequency of a false positive diagnosis of epilepsy: a systematic review of observational studies. Seizure. 2016;41:167-74.
Moseley BD, Dewar S, Haneef Z, Eliashiv D, Stern JM. Reasons for prolonged length of stay in the epilepsy monitoring unit. Epilepsy Res. 2016;127:175-8.
Chiang S, Vannucci M, Goldenholz DM, Moss R, Stern JM. Epilepsy as a dynamic disease: a Bayesian model for differentiating seizure risk from natural variability. Epilepsia Open. 2018;3(2):236-46.
Wang ET, Vannucci M, Haneef Z, Moss R, Rao VR, Chiang S. A Bayesian switching linear dynamical system for estimating seizure chronotypes. Proc Natl Acad Sci U S A. In press.
Tharayil JJ, Chiang S, Moss R, Stern JM, Theodore WH, Goldenholz DM. A big data approach to development of mixed-effects models for seizure count data. Epilepsia. 2017;58(5):835-44.
Baldassano SN, Brinkmann BH, Ung H, Blevins T, Conrad EC, Leyde K, et al. Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings. Brain. 2017;140(6):1680-91.
Kuhlmann L, Karoly P, Freestone DR, Brinkmann BH, Temko A, Barachant A, et al. Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG. Brain. 2018;141(9):2619-30.
Janse SA, Dumanis SB, Huwig T, Hyman S, Fureman BE, Bridges JFP. Patient and caregiver preferences for the potential benefits and risks of a seizure forecasting device: a best-worst scaling. Epilepsy Behav. 2019;96:183-91.
Stirling RE, Maturana MI, Karoly PJ, Nurse ES, McCutcheon K, Grayden DB, et al. Seizure forecasting using a novel sub-scalp ultra-long term EEG monitoring system. Front Neurol. 2021;12:713794.
Yang J, Sawan M. From seizure detection to smart and fully embedded seizure prediction engine: a review. IEEE Trans Biomed Circuits Syst. 2020;14(5):1008-23.
Manzouri F, Heller S, Dümpelmann M, Woias P, Schulze-Bonhage A. A comparison of machine learning classifiers for energy-efficient implementation of seizure detection. Front Syst Neurosci. 2018;12:43.
Zhao S, Yang J, Sawan M. Energy-efficient neural network for epileptic seizure prediction. IEEE Trans Biomed Eng. 2022;69(1):401-11.
Truong ND, Kuhlmann L, Bonyadi MR, Querlioz D, Zhou L, Kavehei O. Epileptic seizure forecasting with generative adversarial networks. IEEE Access. 2019;7:143999-4009.
Kuhlmann L, Lehnertz K, Richardson MP, Schelter B, Zaveri HP. Seizure prediction-ready for a new era. Nat Rev Neurol. 2018;14(10):618-30.
Meisel C, El Atrache R, Jackson M, Schubach S, Ufongene C, Loddenkemper T. Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting. Epilepsia. 2020;61(12):2653-66.
Karoly PJ, Ung H, Grayden DB, Kuhlmann L, Leyde K, Cook MJ, et al. The circadian profile of epilepsy improves seizure forecasting. Brain. 2017;140(8):2169-82.
Schulze-Bonhage A, Sales F, Wagner K, Teotonio R, Carius A, Schelle A, et al. Views of patients with epilepsy on seizure prediction devices. Epilepsy Behav. 2010;18(4):388-96.
Grzeskowiak CL, Dumanis SB. Seizure forecasting: patient and caregiver perspectives. Front Neurol. 2021;12:717428.
Cook MJ, O'Brien TJ, Berkovic SF, Murphy M, Morokoff A, Fabinyi G, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 2013;12(6):563-71.