Thyroid hormone levels in Alzheimer disease: a systematic review and meta-analysis.
Alzheimer disease
Cerebrospinal fluid
Meta-analysis
Serum
Thyroid hormones
Journal
Endocrine
ISSN: 1559-0100
Titre abrégé: Endocrine
Pays: United States
ID NLM: 9434444
Informations de publication
Date de publication:
02 2023
02 2023
Historique:
received:
20
04
2022
accepted:
02
09
2022
pubmed:
28
9
2022
medline:
4
2
2023
entrez:
27
9
2022
Statut:
ppublish
Résumé
Thyroid hormone (TH) disturbances are perceived to contribute to cognitive impairment and dementia. However, there is no consensus on the association between TH levels and Alzheimer Disease (AD). In this study, we aimed to compare serum and cerebrospinal fluid (CSF) TH levels in AD patients to controls by performing a meta-analysis. We systematically searched online databases for papers comparing CSF or serum TH levels in AD patients to controls, and performed a meta-analysis on the extracted data. Out of 1604 records identified, 32 studies were included. No significant difference in serum TSH (standardized mean difference (SMD): -0.03; 95% confidence interval (CI): -0.22-0.16), total T4 (SMD: 0.10; 95% CI: -0.29-0.49), and free T4 (SMD: 0.25; 95% CI: -0.16-0.69) levels were observed. However, there was significantly lower serum total T3 (SMD: -0.56; 95%CI: -0.97 to -0.15) and free T3 (SMD: -0.47; 95%CI: -0.89 to -0.05) levels in AD group compared to controls. Subgroup analyses on studies including only euthyroid patients did not show any significant difference in either of the thyroid hormone levels. Also, no significant difference in CSF total T4 and total T3/total T4 ratios but significantly lower CSF total T3 (SMD: -2.45; 95% CI: -4.89 to -0.02) in AD group were detected. Serum total and free T3 and CSF total T3 levels are significantly lower in AD patients compared to controls. The temporality of changes in thyroid hormone levels and AD development should be illustrated by further longitudinal studies.
Sections du résumé
BACKGROUND AND OBJECTIVE
Thyroid hormone (TH) disturbances are perceived to contribute to cognitive impairment and dementia. However, there is no consensus on the association between TH levels and Alzheimer Disease (AD). In this study, we aimed to compare serum and cerebrospinal fluid (CSF) TH levels in AD patients to controls by performing a meta-analysis.
METHODS
We systematically searched online databases for papers comparing CSF or serum TH levels in AD patients to controls, and performed a meta-analysis on the extracted data.
RESULTS
Out of 1604 records identified, 32 studies were included. No significant difference in serum TSH (standardized mean difference (SMD): -0.03; 95% confidence interval (CI): -0.22-0.16), total T4 (SMD: 0.10; 95% CI: -0.29-0.49), and free T4 (SMD: 0.25; 95% CI: -0.16-0.69) levels were observed. However, there was significantly lower serum total T3 (SMD: -0.56; 95%CI: -0.97 to -0.15) and free T3 (SMD: -0.47; 95%CI: -0.89 to -0.05) levels in AD group compared to controls. Subgroup analyses on studies including only euthyroid patients did not show any significant difference in either of the thyroid hormone levels. Also, no significant difference in CSF total T4 and total T3/total T4 ratios but significantly lower CSF total T3 (SMD: -2.45; 95% CI: -4.89 to -0.02) in AD group were detected.
CONCLUSION
Serum total and free T3 and CSF total T3 levels are significantly lower in AD patients compared to controls. The temporality of changes in thyroid hormone levels and AD development should be illustrated by further longitudinal studies.
Identifiants
pubmed: 36166162
doi: 10.1007/s12020-022-03190-w
pii: 10.1007/s12020-022-03190-w
doi:
Substances chimiques
Thyroid Hormones
0
Triiodothyronine
06LU7C9H1V
Thyroxine
Q51BO43MG4
Types de publication
Meta-Analysis
Systematic Review
Journal Article
Comment
Langues
eng
Sous-ensembles de citation
IM
Pagination
252-272Commentaires et corrections
Type : CommentOn
Type : CommentIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
C.P. Ferri, M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, K. Hall, K. Hasegawa, H. Hendrie, Y. Huang, A. Jorm, C. Mathers, P.R. Menezes, E. Rimmer, M. Scazufca, Global prevalence of dementia: a Delphi consensus study. Lancet. 366(9503), 2112–2117 (2005). https://doi.org/10.1016/s0140-6736(05)67889-0
doi: 10.1016/s0140-6736(05)67889-0
A. Wimo, B. Winblad, H. Aguero-Torres, E. von Strauss, The magnitude of dementia occurrence in the world. Alzheimer Dis. Assoc. Disord. 17(2), 63–67 (2003). https://doi.org/10.1097/00002093-200304000-00002
doi: 10.1097/00002093-200304000-00002
Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016 (2019). Lancet Neurol. 18 (1):88–106. https://doi.org/10.1016/s1474-4422(18)30403-4
R. Brookmeyer, E. Johnson, K. Ziegler-Graham, H.M. Arrighi, Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement.: J. Alzheimer’s Assoc. 3(3), 186–191 (2007). https://doi.org/10.1016/j.jalz.2007.04.381
doi: 10.1016/j.jalz.2007.04.381
A. Salehipour, M. Bagheri, M. Sabahi, M. Dolatshahi, D. Boche, Combination therapy in Alzheimer’s disease: is it time? J. Alzheimer's Dis. 87(4), 1433–1449 (2022). https://doi.org/10.3233/jad-215680
doi: 10.3233/jad-215680
A. Serrano-Pozo, M.P. Frosch, E. Masliah, B.T. Hyman, Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1(1), a006189 (2011). https://doi.org/10.1101/cshperspect.a006189
doi: 10.1101/cshperspect.a006189
M.E. Bégin, M.F. Langlois, D. Lorrain, S.C. Cunnane, Thyroid function and cognition during aging. Curr. Gerontol. Geriatr. Res. 2008, 474868 (2008). https://doi.org/10.1155/2008/474868
doi: 10.1155/2008/474868
K. Bavarsad, M. Hosseini, M.A. Hadjzadeh, A. Sahebkar, The effects of thyroid hormones on memory impairment and Alzheimer’s disease. J. Cell. Physiol. (2009) https://doi.org/10.1002/jcp.28198
Y. Hu, Z.C. Wang, Q.H. Guo, W. Cheng, Y.W. Chen, Is thyroid status associated with cognitive impairment in elderly patients in China? BMC Endocr. Disord. 16, 11 (2016). https://doi.org/10.1186/s12902-016-0092-z
doi: 10.1186/s12902-016-0092-z
A. Akintola, S. Jansen, D. van Bodegom, J. van der Grond, R. Westendorp, A. de Craen, D. Van Heemst, Subclinical hypothyroidism and cognitive function in people over 60 years: a systematic review and meta-analysis. Front. Aging Neurosci. 7 (150), (2015). https://doi.org/10.3389/fnagi.2015.00150
G. Pasqualetti, G. Pagano, G. Rengo, N. Ferrara, F. Monzani, Subclinical hypothyroidism and cognitive impairment: systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 100(11), 4240–4248 (2015). https://doi.org/10.1210/jc.2015-2046
doi: 10.1210/jc.2015-2046
C. Rieben, D. Segna, B.R. da Costa, T-H. Collet, L. Chaker, C.E. Aubert, C. Baumgartner, O.P. Almeida, E. Hogervorst, S. Trompet, K. Masaki, S.P. Mooijaart, J. Gussekloo, R.P. Peeters, D.C. Bauer, D. Aujesky, and N. Rodondi, Thyroid dysfunction and the risk of cognitive decline: a meta-analysis of prospective cohort studies, the journal ofclinical endocrinology & metabolism. 101(12), 4945–4954 (2017). https://doi.org/10.1210/jc.2016-2129
N.A. van Vliet, D. van Heemst, O.P. Almeida, B.O. Åsvold, C.E. Aubert, J.B. Bae, L.E. Barnes, D.C. Bauer, G.J. Blauw, C. Brayne, A.R. Cappola, G. Ceresini, H.C. Comijs, J.F. Dartigues, J.M. Degryse, R.P.F. Dullaart, M.E.A. van Eersel, W.P.J. den Elzen, L. Ferrucci, H.A. Fink, L. Flicker, H.J. Grabe, J.W. Han, C. Helmer, M. Huisman, M.A. Ikram, M. Imaizumi, R.T. de Jongh, J.W. Jukema, K.W. Kim, L.H. Kuller, O.L. Lopez, S.P. Mooijaart, J.H. Moon, E. Moutzouri, M. Nauck, J. Parle, R.P. Peeters, M.H. Samuels, C.O. Schmidt, U. Schminke, P.E. Slagboom, E. Stordal, B. Vaes, H. Völzke, R.G.J. Westendorp, M. Yamada, B.B. Yeap, N. Rodondi, J. Gussekloo, S. Trompet, Association of thyroid dysfunction with cognitive function: an individual participant data analysis. JAMA Intern. Med. 181(11), 1440–1450 (2021). https://doi.org/10.1001/jamainternmed.2021.5078
doi: 10.1001/jamainternmed.2021.5078
S. Mohammadi, M. Dolatshahi, F. Rahmani, Shedding light on thyroid hormone disorders and Parkinson disease pathology: mechanisms and risk factors. J. Endocrinol. Investig. 44(1), 1–13 (2021). https://doi.org/10.1007/s40618-020-01314-5
doi: 10.1007/s40618-020-01314-5
A. Heyman, W.E. Wilkinson, J.A. Stafford, M.J. Helms, A.H. Sigmon, T. Weinberg, Alzheimer’s disease: a study of epidemiological aspects. Ann. Neurol. 15(4), 335–341 (1984). https://doi.org/10.1002/ana.410150406
doi: 10.1002/ana.410150406
P.B.S. Figueroa, A.F.F. Ferreira, L.R. Britto, A.P. Doussoulin, A.D.S. Torrão, Association between thyroid function and Alzheimer’s disease: a systematic review. Metab. Brain Dis. 36(7), 1523–1543 (2021). https://doi.org/10.1007/s11011-021-00760-1
doi: 10.1007/s11011-021-00760-1
D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6(7), e1000097 (2009). https://doi.org/10.1371/journal.pmed.1000097
doi: 10.1371/journal.pmed.1000097
A. Stang, Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 25(9), 603–605 (2010). https://doi.org/10.1007/s10654-010-9491-z
doi: 10.1007/s10654-010-9491-z
D. Luo, X. Wan, J. Liu, T. Tong, Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 27(6), 1785–1805 (2018). https://doi.org/10.1177/0962280216669183
doi: 10.1177/0962280216669183
X. Wan, W. Wang, J. Liu, T. Tong, Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 14, 135 (2014). https://doi.org/10.1186/1471-2288-14-135
doi: 10.1186/1471-2288-14-135
J.P. Higgins, Cochrane handbook for systematic reviews of interventions version 5.0. 1. The Cochrane Collaboration. (2008) http://www.cochrane-handbook.org
J.P. Higgins, S.G. Thompson, J.J. Deeks, D.G. Altman, Measuring inconsistency in meta-analyses. Bmj 327(7414), 557–560 (2003)
doi: 10.1136/bmj.327.7414.557
J.M. Chen, C.Q. Huang, M. Ai, L. Kuang, Circadian rhythm of TSH levels in subjects with Alzheimer’s disease (AD). Aging Clin. Exp. Res. 25(2), 153–157 (2013). https://doi.org/10.1007/s40520-013-0025-x
doi: 10.1007/s40520-013-0025-x
J.M. Gómez Sáez, M. Aguilar Barberá, GH response to GH-releasing factor in dementia and its relation with TSH response to TSH-releasing factor. Recent. Prog. Med. 82(10), 514–516 (1991)
L. Yong-Hong, P. Xiao-Dong, H. Chang-Quan, Y. Bo, L. Qing-Xiu, Hypothalamic-pituitary-thyroid axis in patients with Alzheimer disease (AD).J. Investig. Med. 61(3), 578–581 (2013). https://doi.org/10.2310/JIM.0b013e318280aafb
doi: 10.2310/JIM.0b013e318280aafb
J.M. Gómez, M. Aguilar, M.A. Navarro, J. Ortolá, J. Soler, Secretion of growth hormone and thyroid-stimulating hormone in patients with dementia. Clin. Investig. 72(7), 489–493 (1994). https://doi.org/10.1007/bf00207475
doi: 10.1007/bf00207475
P. Johansson, E.G. Almqvist, J.O. Johansson, N. Mattsson, O. Hansson, A. Wallin, K. Blennow, H. Zetterberg, J. Svensson, Reduced cerebrospinal fluid level of thyroxine in patients with Alzheimer’s disease. Psychoneuroendocrinology 38(7), 1058–1066 (2013). https://doi.org/10.1016/j.psyneuen.2012.10.012
doi: 10.1016/j.psyneuen.2012.10.012
P. Quinlan, A. Horvath, C. Eckerström, A. Wallin, J. Svensson, Altered thyroid hormone profile in patients with Alzheimer’s disease. Psychoneuroendocrinology 121, 104844 (2020). https://doi.org/10.1016/j.psyneuen.2020.104844
doi: 10.1016/j.psyneuen.2020.104844
S. Sampaolo, A. Campos-Barros, G. Mazziotti, S. Carlomagno, V. Sannino, G. Amato, C. Carella, G. Di Iorio, Increased cerebrospinal fluid levels of 3,3′,5′-triiodothyronine in patients with Alzheimer’s disease. J. Clin. Endocrinol. Metab. 90(1), 198–202 (2005). https://doi.org/10.1210/jc.2004-1083
doi: 10.1210/jc.2004-1083
G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, E.M. Stadlan, Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7), 939–944 (1984). https://doi.org/10.1212/wnl.34.7.939
doi: 10.1212/wnl.34.7.939
L.A. van Osch, E. Hogervorst, M. Combrinck, A.D. Smith, Low thyroid-stimulating hormone as an independent risk factor for Alzheimer disease. Neurology 62(11), 1967–1971 (2004). https://doi.org/10.1212/01.wnl.0000128134.84230.9f
doi: 10.1212/01.wnl.0000128134.84230.9f
R. Agarwal, S. Kushwaha, N. Chhillar, A. Kumar, D.K. Dubey, C.B. Tripathi, A cross-sectional study on thyroid status in North Indian elderly outpatients with dementia. Ann. Indian Acad. Neurol. 16(3), 333–337 (2013). https://doi.org/10.4103/0972-2327.116916
doi: 10.4103/0972-2327.116916
T.H. Lampe, S.R. Plymate, S.C. Risse, H. Kopeikin, L. Cubberley, M.A. Raskind, TSH responses to two TRH doses in men with Alzheimer’s disease. Psychoneuroendocrinology 13(3), 245–254 (1988). https://doi.org/10.1016/0306-4530(88)90022-4
doi: 10.1016/0306-4530(88)90022-4
S.E. Molchan, B.A. Lawlor, J.L. Hill, A.M. Mellow, C.L. Davis, R. Martinez, T. Sunderland, The TRH stimulation test in Alzheimer’s disease and major depression: relationship to clinical and CSF measures. Biol. Psychiatry 30(6), 567–576 (1991). https://doi.org/10.1016/0006-3223(91)90026-i
doi: 10.1016/0006-3223(91)90026-i
N. Kimura, T. Kumamoto, H. Masuda, T. Hanaoka, Y. Hazama, T. Okazaki, R. Arakawa, Relationship between thyroid hormone levels and regional cerebral blood flow in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 25(2), 138–143 (2011). https://doi.org/10.1097/WAD.0b013e3181f9aff2
doi: 10.1097/WAD.0b013e3181f9aff2
S. Nomoto, R. Kinno, H. Ochiai, S. Kubota, Y. Mori, A. Futamura, A. Sugimoto, T. Kuroda, S. Yano, H. Murakami, T. Shirasawa, T. Yoshimoto, A. Minoura, A. Kokaze, K. Ono, The relationship between thyroid function and cerebral blood flow in mild cognitive impairment and Alzheimer’s disease. PLOS One 14(4), e0214676 (2019). https://doi.org/10.1371/journal.pone.0214676
doi: 10.1371/journal.pone.0214676
S. Barez-Lopez, A. Guadano-Ferraz, Thyroid hormone availability and action during brain development in rodents. Front. Cell. Neurosci. 11, 240 (2017). https://doi.org/10.3389/fncel.2017.00240
doi: 10.3389/fncel.2017.00240
B. Belandia, M.J. Latasa, A. Villa, A. Pascual, Thyroid hormone negatively regulates the transcriptional activity of the beta-amyloid precursor protein gene. J. Biol. Chem. 273(46), 30366–30371 (1998). https://doi.org/10.1074/jbc.273.46.30366
doi: 10.1074/jbc.273.46.30366
A. Montero-Pedrazuela, C. Venero, R. Lavado-Autric, I. Fernandez-Lamo, J.M. Garcia-Verdugo, J. Bernal, A. Guadano-Ferraz, Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior. Mol. Psychiatry 11(4), 361–371 (2006). https://doi.org/10.1038/sj.mp.4001802
doi: 10.1038/sj.mp.4001802
C.C. Thompson, G.B. Potter, Thyroid hormone action in neural development. Cereb. Cortex 10(10), 939–945 (2000). https://doi.org/10.1093/cercor/10.10.939
doi: 10.1093/cercor/10.10.939
H. Vara, B. Martinez, A. Santos, A. Colino, Thyroid hormone regulates neurotransmitter release in neonatal rat hippocampus. Neuroscience 110(1), 19–28 (2002). https://doi.org/10.1016/s0306-4522(01)00541-3
doi: 10.1016/s0306-4522(01)00541-3
A. Chaalal, R. Poirier, D. Blum, S. Laroche, V. Enderlin, Thyroid hormone supplementation restores spatial memory, hippocampal markers of neuroinflammation, plasticity-related signaling molecules, and β-amyloid peptide load in hypothyroid rats. Mol. Neurobiol. 56(1), 722–735 (2019). https://doi.org/10.1007/s12035-018-1111-z
doi: 10.1007/s12035-018-1111-z
L.X. Li, T. Yang, L. Guo, D.Y. Wang, C.H. Tang, Q. Li, H.M. Yang, J. Zhu, L.L. Zhang, Serum tau levels are increased in patients with hyperthyroidism. Neurosci. Lett. 729, 135003 (2020). https://doi.org/10.1016/j.neulet.2020.135003
doi: 10.1016/j.neulet.2020.135003
L. Goumidi, F. Flamant, C. Lendon, D. Galimberti, F. Pasquier, E. Scarpini, D. Hannequin, D. Campion, P. Amouyel, J.C. Lambert, A. Meirhaeghe, Study of thyroid hormone receptor alpha gene polymorphisms on Alzheimer’s disease. Neurobiol. Aging 32(4), 624–630 (2011). https://doi.org/10.1016/j.neurobiolaging.2009.04.007
doi: 10.1016/j.neurobiolaging.2009.04.007
P. Quinlan, A. Horvath, A. Wallin, J. Svensson, Low serum concentration of free triiodothyronine (FT3) is associated with increased risk of Alzheimer’s disease. Psychoneuroendocrinology 99, 112–119 (2019). https://doi.org/10.1016/j.psyneuen.2018.09.002
doi: 10.1016/j.psyneuen.2018.09.002
E.L. Constant, A.G. de Volder, A. Ivanoiu, A. Bol, D. Labar, A. Seghers, G. Cosnard, J. Melin, C. Daumerie, Cerebral blood flow and glucose metabolism in hypothyroidism: a positron emission tomography study. J. Clin. Endocrinol. Metab. 86(8), 3864–3870 (2001). https://doi.org/10.1210/jcem.86.8.7749
doi: 10.1210/jcem.86.8.7749
P. Quinlan, A. Horvath, C. Eckerström, A. Wallin, J. Svensson, Higher thyroid function is associated with accelerated hippocampal volume loss in Alzheimer’s disease. Psychoneuroendocrinology 139, 105710 (2022). https://doi.org/10.1016/j.psyneuen.2022.105710
doi: 10.1016/j.psyneuen.2022.105710
M. Goto, N. Kimura, E. Matsubara, Association of serum thyroid hormone levels with positron emission tomography imaging in non-demented older adults. Psychogeriatrics 22(3), 373–381 (2022). https://doi.org/10.1111/psyg.12825
doi: 10.1111/psyg.12825
A. Accorroni, F.S. Giorgi, R. Donzelli, L. Lorenzini, C. Prontera, A. Saba, A. Vergallo, G. Tognoni, G. Siciliano, F. Baldacci, U. Bonuccelli, A. Clerico, R. Zucchi, Thyroid hormone levels in the cerebrospinal fluid correlate with disease severity in euthyroid patients with Alzheimer’s disease. Endocrine 55(3), 981–984 (2017). https://doi.org/10.1007/s12020-016-0897-6
doi: 10.1007/s12020-016-0897-6
E. Fliers, A.C. Bianco, L. Langouche, A. Boelen, Thyroid function in critically ill patients. Lancet Diabetes Endocrinol. 3(10), 816–825 (2015). https://doi.org/10.1016/s2213-8587(15)00225-9
doi: 10.1016/s2213-8587(15)00225-9
G. Pasqualetti, V. Calsolaro, S. Bernardini, G. Linsalata, R. Bigazzi, N. Caraccio, F. Monzani, Degree of peripheral thyroxin deiodination, frailty, and long-term survival in hospitalized older patients. J. Clin. Endocrinol. Metab. 103(5), 1867–1876 (2018). https://doi.org/10.1210/jc.2017-02149
doi: 10.1210/jc.2017-02149
J. Gussekloo, E. van Exel, A.J. de Craen, A.E. Meinders, M. Frölich, R.G. Westendorp, Thyroid status, disability and cognitive function, and survival in old age. JAMA 292(21), 2591–2599 (2004). https://doi.org/10.1001/jama.292.21.2591
doi: 10.1001/jama.292.21.2591
J.D. Davis, A. Podolanczuk, J.E. Donahue, E. Stopa, J.V. Hennessey, L.G. Luo, Y.P. Lim, R.A. Stern, Thyroid hormone levels in the prefrontal cortex of post-mortem brains of Alzheimer’s disease patients. Curr. Aging Sci. 1(3), 175–181 (2008). https://doi.org/10.2174/1874609810801030175
doi: 10.2174/1874609810801030175
B. Đapić, E. Schernhammer, H. Haslacher, E. Stögmann, J. Lehrner, No effect of thyroid hormones on 5-year mortality in patients with subjective cognitive decline, mild cognitive disorder, and Alzheimer’s disease. J. Neuroendocrinol. 34(4), e13107 (2022). https://doi.org/10.1111/jne.13107
doi: 10.1111/jne.13107
A. Chiaravalloti, F. Ursini, A. Fiorentini, G. Barbagallo, A. Martorana, G. Koch, M. Tavolozza, O. Schillaci, Functional correlates of TSH, fT3 and fT4 in Alzheimer disease: a F-18 FDG PET/CT study. Sci. Rep. 7(1), 6220 (2017). https://doi.org/10.1038/s41598-017-06138-7
doi: 10.1038/s41598-017-06138-7
E. Marouli, L. Yusuf, A.D. Kjaergaard, R. Omar, A. Kuś, O. Babajide, R. Sterenborg, B.O. Åsvold, S. Burgess, C. Ellervik, A. Teumer, M. Medici, P. Deloukas, Thyroid function and the risk of Alzheimer’s disease: a Mendelian randomization study. Thyroid 31(12), 1794–1799 (2021). https://doi.org/10.1089/thy.2021.0321
doi: 10.1089/thy.2021.0321
G.H. Li, C.L. Cheung, E.Y. Cheung, W.C. Chan, K.C. Tan, Genetically determined TSH level within reference range is inversely associated with Alzheimer disease. J. Clin. Endocrinol. Metab. 106(12), e5064–e5074 (2021). https://doi.org/10.1210/clinem/dgab527
doi: 10.1210/clinem/dgab527
N. Zhang, H.J. Du, J.H. Wang, Y. Cheng, A pilot study on the relationship between thyroid status and neuropsychiatric symptoms in patients with Alzheimer disease. Chin. Med J. 125(18), 3211–3216 (2012)
R. Agarwal, N. Chhillar, S. Kushwaha, N.K. Singh, C.B. Tripathi, Role of vitamin B(12), folate, and thyroid stimulating hormone in dementia: a hospital-based study in north Indian population. Ann. Indian Acad. Neurol. 13(4), 257–262 (2010). https://doi.org/10.4103/0972-2327.74193
doi: 10.4103/0972-2327.74193
Y. Hu, Z.-C. Wang, Q.-H. Guo, W. Cheng, Y.-W. Chen, Is thyroid status associated with cognitive impairment in elderly patients in China? BMC Endocr. Disord. 16(1), 11 (2016). https://doi.org/10.1186/s12902-016-0092-z
doi: 10.1186/s12902-016-0092-z
D.R. Thomas, R. Hailwood, B. Harris, P.A. Williams, M.F. Scanlon, R. John, Thyroid status in senile dementia of the Alzheimer type (SDAT). Acta Psychiatr. Scand. 76(2), 158–163 (1987). https://doi.org/10.1111/j.1600-0447.1987.tb02879.x
doi: 10.1111/j.1600-0447.1987.tb02879.x
J.E. Christie, L.J. Whalley, J. Bennie, H. Dick, I.M. Blackburn, D.H. Blackwood, G. Fink, Characteristic plasma hormone changes in Alzheimer’s disease. Br. J. Psychiatry 150, 674–681 (1987). https://doi.org/10.1192/bjp.150.5.674
doi: 10.1192/bjp.150.5.674
T. Zhao, B.M. Chen, X.M. Zhao, Z.Y. Shan, Subclinical hypothyroidism and depression: a meta-analysis. Transl. Psychiatry 8(1), 239 (2018). https://doi.org/10.1038/s41398-018-0283-7
doi: 10.1038/s41398-018-0283-7
Y. Zhou, Y. Ma, Q. Wu, Q. Wang, W.F.Z. Yang, Y. Wang, D. Yang, Y. Luo, K. Tang, T. Liu, D. Wang, Comparison of thyroid hormone levels between patients with major depressive disorder and healthy individuals in China. Front. Psychiatry 12 (1716) (2021). https://doi.org/10.3389/fpsyt.2021.750749
M. Albert, M. Jenike, R. Nixon, K. Nobel, Thyrotropin response to thyrotropin-releasing hormone in patients with dementia of the Alzheimer type. Biol. Psychiatry 33(4), 267–271 (1993). https://doi.org/10.1016/0006-3223(93)90293-M
doi: 10.1016/0006-3223(93)90293-M
Y.S. Chang, Y.H. Wu, C.J. Wang, S.H. Tang, H.L. Chen, Higher levels of thyroxine may predict a favorable response to donepezil treatment in patients with Alzheimer disease: a prospective, case–control study. BMC Neurosci. 19(1), 36 (2018). https://doi.org/10.1186/s12868-018-0436-x
doi: 10.1186/s12868-018-0436-x
L.G. Forssell, R. Eklöf, B. Winblad, L. Forssell, Early stages of late onset Alzheimer’s disease. Acta Neurol. Scand. 79(S121), 27–42 (1989). https://doi.org/10.1111/j.1600-0404.1989.tb04875.x
doi: 10.1111/j.1600-0404.1989.tb04875.x
M. Franceschi, L. Perego, L. Ferini-Strambi, S. Smirne, N. Canal, Neuroendocrinological function in Alzheimer’s disease. Neuroendocrinology 48(4), 367–370 (1988). https://doi.org/10.1159/000125036
doi: 10.1159/000125036
E. Kapaki, I. Ilias, G.P. Paraskevas, I. Theotoka, I. Christakopoulou, Thyroid function in patients with Alzheimer’s diseasetreated with cholinesterase inhibitors. Acta Neurobiol. Exp 63(4), 389–392 (2003).
N. Ulusu, G. Yilmaz, Z. Erbayraktar, A. Evlice, M. Genc, S. Aras, A. Avci, G. Yener, A comparative study on thyroid function in Alzheimer’s disease: results from a Turkish multi-centre study. J. Neurol. Sci. 32, 335–347 (2015)
C.A. Peabody, J.E. Thornton, J.R. Tinklenberg, Progressive dementia associated with thyroid disease. J. Clin. Psychiatry 47(2), 100 (1986)
E.R. Sarhat, Altered serum marker of thyroid profile and antioxidant enzymes in individuals Alzheimer’s disease. Int. Res. J. Pharm. 10(1), 56–60 (2019).
T. Sunderland, P.N. Tariot, E.A. Mueller, P.A. Newhouse, D.L. Murphy, R.M. Cohen, TRH stimulation test in dementia of the Alzheimer type and elderly controls. Psychiatry Res. 16(4), 269–275 (1985). https://doi.org/10.1016/0165-1781(85)90118-0
doi: 10.1016/0165-1781(85)90118-0
S. Annerbo, L.-O. Wahlund, J. Lökk, The significance of thyroid-stimulating hormone and homocysteine in the development of Alzheimer’s disease in mild cognitive impairment: a 6-year follow-up study. Am. J. Alzheimer’s Dis. Other Dement.® 21(3), 182–188 (2006). https://doi.org/10.1177/1533317506289282
doi: 10.1177/1533317506289282
S. Annerbo, M. Kivipelto, J. Lokk, A prospective study on the development of Alzheimer’s disease with regard to thyroid-stimulating hormone and homocysteine. Dement. Geriatr. Cogn. Disord. 28(3), 275–280 (2009). https://doi.org/10.1159/000242439
doi: 10.1159/000242439
R.M. Ranzola, Y.R. Rodríguez, J.J. Cuesta, A.P. Truffin, J.C. Llano, Myeloperoxidase activity, lipid profile and thyroid function in patients who suffer from Alzheimer’s disease. Rev. Cubana Investig. Bioméd. 38 (1), (2019)