Engineering Transport Orbitals in Single-Molecule Junctions.
Journal
The journal of physical chemistry letters
ISSN: 1948-7185
Titre abrégé: J Phys Chem Lett
Pays: United States
ID NLM: 101526034
Informations de publication
Date de publication:
06 Oct 2022
06 Oct 2022
Historique:
pubmed:
28
9
2022
medline:
28
9
2022
entrez:
27
9
2022
Statut:
ppublish
Résumé
Controlling charge transport through molecules is challenging because it requires engineering of the energy of molecular orbitals involved in the transport process. While side groups are central to maintaining solubility in many molecular materials, their role in modulating charge transport through single-molecule junctions has received less attention. Here, using two break-junction techniques and computational modeling, we investigate systematically the effect of electron-donating and -withdrawing side groups on the charge transport through single molecules. By characterizing the conductance and thermopower, we demonstrate that side groups can be used to manipulate energy levels of the transport orbitals. Furthermore, we develop a novel statistical approach to model quantum transport through molecular junctions. The proposed method does not treat the electrodes' chemical potential as a free parameter and leads to more robust prediction of electrical conductance as confirmed by our experiment. The new method is generic and can be used to predict the conductance of molecules.
Identifiants
pubmed: 36166407
doi: 10.1021/acs.jpclett.2c01851
pmc: PMC9549519
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9156-9164Références
Nano Lett. 2010 Jan;10(1):156-63
pubmed: 20025266
Nano Lett. 2007 Feb;7(2):502-6
pubmed: 17253760
Science. 1999 Nov 19;286(5444):1550-1552
pubmed: 10567259
J Am Chem Soc. 2012 Feb 1;134(4):2292-304
pubmed: 22175273
Chem Rev. 2016 Apr 13;116(7):4318-440
pubmed: 26979510
Nanoscale. 2018 Feb 8;10(6):3060-3067
pubmed: 29376529
J Am Chem Soc. 2014 Dec 31;136(52):17922-5
pubmed: 25494539
J Phys Condens Matter. 2008 Sep 17;20(37):374101
pubmed: 21694409
J Am Chem Soc. 2008 Jan 23;130(3):1080-4
pubmed: 18163626
Nanoscale. 2020 Sep 28;12(36):18908-18917
pubmed: 32902546
Angew Chem Int Ed Engl. 2014 Oct 20;53(43):11625-8
pubmed: 25196584
J Am Chem Soc. 2021 Jun 30;143(25):9385-9392
pubmed: 34143603
Sci Rep. 2015 Mar 11;5:9002
pubmed: 25758349
Nanotechnology. 2018 Sep 14;29(37):373001
pubmed: 29926808
Rev Sci Instrum. 2011 May;82(5):053907
pubmed: 21639518
Chemistry. 2011 Mar 1;17(10):2948-56
pubmed: 21280109
Beilstein J Nanotechnol. 2015 Jul 17;6:1558-67
pubmed: 26425407
Nanoscale. 2021 Jun 24;13(24):10668-10711
pubmed: 34110337
Angew Chem Int Ed Engl. 2018 Nov 12;57(46):15065-15069
pubmed: 30208251
ACS Nano. 2009 Dec 22;3(12):3861-8
pubmed: 19916506
Chemphyschem. 2021 Dec 13;22(24):2573-2578
pubmed: 34636146
J Phys Condens Matter. 2008 Feb 13;20(6):064208
pubmed: 21693870
J Am Chem Soc. 2010 Jul 7;132(26):9157-64
pubmed: 20536142
Angew Chem Int Ed Engl. 2012 Mar 26;51(13):3203-6
pubmed: 22334514