Sampling rare conformational transitions with a quantum computer.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
29 09 2022
29 09 2022
Historique:
received:
28
04
2022
accepted:
07
09
2022
entrez:
29
9
2022
pubmed:
30
9
2022
medline:
4
10
2022
Statut:
epublish
Résumé
Structural rearrangements play a central role in the organization and function of complex biomolecular systems. In principle, Molecular Dynamics (MD) simulations enable us to investigate these thermally activated processes with an atomic level of resolution. In practice, an exponentially large fraction of computational resources must be invested to simulate thermal fluctuations in metastable states. Path sampling methods focus the computational power on sampling the rare transitions between states. One of their outstanding limitations is to efficiently generate paths that visit significantly different regions of the conformational space. To overcome this issue, we introduce a new algorithm for MD simulations that integrates machine learning and quantum computing. First, using functional integral methods, we derive a rigorous low-resolution spatially coarse-grained representation of the system's dynamics, based on a small set of molecular configurations explored with machine learning. Then, we use a quantum annealer to sample the transition paths of this low-resolution theory. We provide a proof-of-concept application by simulating a benchmark conformational transition with all-atom resolution on the D-Wave quantum computer. By exploiting the unique features of quantum annealing, we generate uncorrelated trajectories at every iteration, thus addressing one of the challenges of path sampling. Once larger quantum machines will be available, the interplay between quantum and classical resources may emerge as a new paradigm of high-performance scientific computing. In this work, we provide a platform to implement this integrated scheme in the field of molecular simulations.
Identifiants
pubmed: 36175529
doi: 10.1038/s41598-022-20032-x
pii: 10.1038/s41598-022-20032-x
pmc: PMC9522734
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
16336Subventions
Organisme : European Research Council
ID : Starting Grant: 804305
Pays : International
Informations de copyright
© 2022. The Author(s).
Références
J Chem Theory Comput. 2014 Aug 12;10(8):2975-86
pubmed: 26588271
Annu Rev Biophys. 2012;41:429-52
pubmed: 22577825
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5494-E5503
pubmed: 28634293
Rep Prog Phys. 2016 Jan;79(1):014401
pubmed: 26684222
Science. 2019 Sep 6;365(6457):
pubmed: 31488660
J Chem Phys. 2016 Sep 28;145(12):124120
pubmed: 27782633
Nature. 2021 Jul;595(7866):233-238
pubmed: 34234335
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12562-6
pubmed: 12271136
PLoS Comput Biol. 2017 Jul 26;13(7):e1005659
pubmed: 28746339
Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):17641-17647
pubmed: 31416918
Phys Rev Lett. 2007 Sep 14;99(11):118102
pubmed: 17930474
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 1):061112
pubmed: 20365123
Phys Rev Lett. 2006 Sep 8;97(10):108101
pubmed: 17025856
Sci Rep. 2012;2:571
pubmed: 22891157
Nature. 2019 Oct;574(7779):505-510
pubmed: 31645734
Annu Rev Phys Chem. 2020 Apr 20;71:361-390
pubmed: 32092281
Phys Rev Lett. 2017 Oct 13;119(15):150601
pubmed: 29077427
Science. 2020 Dec 18;370(6523):1460-1463
pubmed: 33273064
Sci Rep. 2016 Mar 03;6:22318
pubmed: 26936311
Annu Rev Phys Chem. 2016 May 27;67:669-90
pubmed: 27090846
Curr Opin Struct Biol. 2020 Apr;61:139-145
pubmed: 31972477
Phys Rev Lett. 2021 Jan 15;126(2):028104
pubmed: 33512219
Chem Rev. 2019 Oct 9;119(19):10856-10915
pubmed: 31469277
J Chem Phys. 2019 Aug 21;151(7):070902
pubmed: 31438687
Phys Rev Lett. 2021 Aug 20;127(8):080501
pubmed: 34477421
Phys Rev Lett. 2015 Mar 6;114(9):098103
pubmed: 25793854
J Chem Phys. 2017 Oct 21;147(15):152716
pubmed: 29055335
Rep Prog Phys. 2020 May;83(5):054401
pubmed: 32235066
Rep Prog Phys. 2012 Aug;75(8):082401
pubmed: 22828179
Proteins. 2010 Jun;78(8):1950-8
pubmed: 20408171
Phys Rev Lett. 2018 May 25;120(21):210501
pubmed: 29883142