The attentional boost effect facilitates visual category learning.
Attention
The attentional boost effect
Visual category learning
Journal
Attention, perception & psychophysics
ISSN: 1943-393X
Titre abrégé: Atten Percept Psychophys
Pays: United States
ID NLM: 101495384
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
accepted:
16
09
2022
pubmed:
30
9
2022
medline:
5
11
2022
entrez:
29
9
2022
Statut:
ppublish
Résumé
Increasing evidence has shown that summary visual statistics, such as the mean size or centroid of locations, can be perceived without focal attention. Here, we tested the role of attention in visual category learning - rapid learning of visual similarities among paintings of the same artist. Participants encoded paintings from two famous artists into memory while simultaneously monitoring a rapid serial visual presentation (RSVP) stream of colored squares, pressing the spacebar for target colors and making no response to distractor colors. Paintings encoded with the RSVP targets were better remembered than those encoded with the RSVP distractors, demonstrating an Attentional Boost Effect. Importantly, pairing one artist's paintings with the RSVP targets led to better visual category learning - participants were more accurate at recognizing novel paintings from this artist, relative to another artist whose paintings were presented with the RSVP distractors. Thus, visual category learning is subjected to the same constraint of attention as exemplar memory, demonstrating common mechanisms for exemplar and category learning.
Identifiants
pubmed: 36175764
doi: 10.3758/s13414-022-02579-z
pii: 10.3758/s13414-022-02579-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2432-2443Subventions
Organisme : Engdahl Research Fund
ID : N/A
Informations de copyright
© 2022. The Psychonomic Society, Inc.
Références
Alvarez, G. A., & Oliva, A. (2008). The Representation of Simple Ensemble Visual Features Outside the Focus of Attention. Psychological Science, 19(4), 392–398. https://doi.org/10.1111/j.1467-9280.2008.02098.x
doi: 10.1111/j.1467-9280.2008.02098.x
pubmed: 18399893
Alvarez, G. A., & Oliva, A. (2009). Spatial ensemble statistics are efficient codes that can be represented with reduced attention. Proceedings of the National Academy of Sciences, 106(18), 7345–7350. https://doi.org/10.1073/pnas.0808981106
doi: 10.1073/pnas.0808981106
Baek, J., & Chong, S. C. (2020). Ensemble perception and focused attention: Two different modes of visual processing to cope with limited capacity. Psychonomic Bulletin & Review, 27(4), 602–606. https://doi.org/10.3758/s13423-020-01718-7
doi: 10.3758/s13423-020-01718-7
Bainbridge, W. A. (2019). Chapter One - Memorability: How what we see influences what we remember. In K. D. Federmeier & D. M. Beck (Eds.), Psychology of Learning and Motivation (Vol. 70, pp. 1–27). Academic Press. https://doi.org/10.1016/bs.plm.2019.02.001
doi: 10.1016/bs.plm.2019.02.001
Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55–81. https://doi.org/10.1016/0010-0285(73)90004-2
doi: 10.1016/0010-0285(73)90004-2
Chong, S. C., & Treisman, A. (2003). Representation of statistical properties. Vision Research, 43(4), 393–404. https://doi.org/10.1016/S0042-6989(02)00596-5
doi: 10.1016/S0042-6989(02)00596-5
pubmed: 12535996
Chong, S. C., & Treisman, A. (2005). Statistical processing: Computing the average size in perceptual groups. Vision Research, 45(7), 891–900. https://doi.org/10.1016/j.visres.2004.10.004
doi: 10.1016/j.visres.2004.10.004
pubmed: 15644229
Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 781. https://doi.org/10.3389/fpsyg.2014.00781
doi: 10.3389/fpsyg.2014.00781
pubmed: 25120503
pmcid: 4114196
Evans, K. K., Haygood, T. M., Cooper, J., Culpan, A.-M., & Wolfe, J. M. (2016). A half-second glimpse often lets radiologists identify breast cancer cases even when viewing the mammogram of the opposite breast. Proceedings of the National Academy of Sciences of the United States of America, 113(37), 10292–10297. https://doi.org/10.1073/pnas.1606187113
doi: 10.1073/pnas.1606187113
pubmed: 27573841
pmcid: 5027466
Gobet, F., & Charness, N. (2006). Expertise in Chess. In The Cambridge handbook of expertise and expert performance (pp. 523–538). Cambridge University Press. https://doi.org/10.1017/CBO9780511816796.030
doi: 10.1017/CBO9780511816796.030
Graham, D. J., Hughes, J. M., Leder, H., & Rockmore, D. N. (2012). Statistics, vision, and the analysis of artistic style. WIREs Computational Statistics, 4(2), 115–123. https://doi.org/10.1002/wics.197
doi: 10.1002/wics.197
Haberman, J., & Whitney, D. (2009). Seeing the mean: Ensemble coding for sets of faces. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 718–734. https://doi.org/10.1037/a0013899
doi: 10.1037/a0013899
pubmed: 19485687
Jäkel, F., Schölkopf, B., & Wichmann, F. A. (2008). Generalization and similarity in exemplar models of categorization: Insights from machine learning. Psychonomic Bulletin & Review, 15(2), 256–271. https://doi.org/10.3758/PBR.15.2.256
doi: 10.3758/PBR.15.2.256
Johnston, I. A., Ji, M., Cochrane, A., Demko, Z., Robbins, J. B., Stephenson, J. W., & Green, C. S. (2020). Perceptual Learning of Appendicitis Diagnosis in Radiological Images. Journal of Vision, 20(8), 16. https://doi.org/10.1167/jov.20.8.16
doi: 10.1167/jov.20.8.16
pubmed: 32790849
pmcid: 7438669
Knierim, J. J., & Neunuebel, J. P. (2016). Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics. Neurobiology of Learning and Memory, 129, 38–49. https://doi.org/10.1016/j.nlm.2015.10.008
doi: 10.1016/j.nlm.2015.10.008
pubmed: 26514299
Kornell, N., & Bjork, R. A. (2008). Learning Concepts and Categories: Is Spacing the “Enemy of Induction”? Psychological Science, 19(6), 585–592. https://doi.org/10.1111/j.1467-9280.2008.02127.x
doi: 10.1111/j.1467-9280.2008.02127.x
pubmed: 18578849
Li, F. F., VanRullen, R., Koch, C., & Perona, P. (2002). Rapid natural scene categorization in the near absence of attention. Proceedings of the National Academy of Sciences, 99(14), 9596–9601. https://doi.org/10.1073/pnas.092277599
doi: 10.1073/pnas.092277599
Lin, J. Y., Pype, A. D., Murray, S. O., & Boynton, G. M. (2010). Enhanced Memory for Scenes Presented at Behaviorally Relevant Points in Time. PLOS Biology, 8(3), e1000337. https://doi.org/10.1371/journal.pbio.1000337
doi: 10.1371/journal.pbio.1000337
pubmed: 20305721
pmcid: 2838752
Liu, K. Y., Gould, R. L., Coulson, M. C., Ward, E. V., & Howard, R. J. (2016). Tests of pattern separation and pattern completion in humans—A systematic review. Hippocampus, 26(6), 705–717. https://doi.org/10.1002/hipo.22561
doi: 10.1002/hipo.22561
pubmed: 26663362
Moyal, R., Turker, H. B., Luh, W.-M., & Swallow, K. M. (2022). Auditory Target Detection Enhances Visual Processing and Hippocampal Functional Connectivity (p. 2020.09.19.304881). bioRxiv. https://doi.org/10.1101/2020.09.19.304881
doi: 10.1101/2020.09.19.304881
Mulligan, N. W., Spataro, P., & Picklesimer, M. (2014). The attentional boost effect with verbal materials. Journal of Experimental Psychology. Learning, Memory, and Cognition, 40(4), 1049–1063. https://doi.org/10.1037/a0036163
doi: 10.1037/a0036163
pubmed: 24611436
Mulligan, N. W., Smith, S. A., & Spataro, P. (2016). The attentional boost effect and context memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 42(4), 598–607. https://doi.org/10.1037/xlm0000183
doi: 10.1037/xlm0000183
pubmed: 26348201
Ngo, C. T., Michelmann, S., Olson, I. R., & Newcombe, N. S. (2021). Pattern separation and pattern completion: Behaviorally separable processes? Memory & Cognition, 49(1), 193–205. https://doi.org/10.3758/s13421-020-01072-y
doi: 10.3758/s13421-020-01072-y
Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology. General, 115(1), 39–61. https://doi.org/10.1037//0096-3445.115.1.39
doi: 10.1037//0096-3445.115.1.39
pubmed: 2937873
Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. https://doi.org/10.3758/s13428-018-01193-y
doi: 10.3758/s13428-018-01193-y
pubmed: 30734206
pmcid: 6420413
Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77(3, Pt.1), 353–363. https://doi.org/10.1037/h0025953
doi: 10.1037/h0025953
pubmed: 5665566
Prull, M. W. (2019). The attentional boost effect for words in young and older adults. Psychology and Aging, 34(3), 405–417. https://doi.org/10.1037/pag0000337
doi: 10.1037/pag0000337
pubmed: 30802092
Rolls, E. (2013). The mechanisms for pattern completion and pattern separation in the hippocampus. Frontiers in Systems Neuroscience, 7, 74. https://doi.org/10.3389/fnsys.2013.00074
doi: 10.3389/fnsys.2013.00074
pubmed: 24198767
pmcid: 3812781
Rossi-Arnaud, C., Spataro, P., Costanzi, M., Saraulli, D., & Cestari, V. (2018). Divided attention enhances the recognition of emotional stimuli: Evidence from the attentional boost effect. Memory, 26(1), 42–52. https://doi.org/10.1080/09658211.2017.1319489
doi: 10.1080/09658211.2017.1319489
pubmed: 28436271
Rouder, J. N., & Morey, R. D. (2011). A Bayes factor meta-analysis of Bem’s ESP claim. Psychonomic Bulletin & Review, 18(4), 682–689. https://doi.org/10.3758/s13423-011-0088-7
doi: 10.3758/s13423-011-0088-7
Rush, J. C., & Sabers, D. L. (1981). The Perception of Artistic Style. Studies in Art Education, 23(1), 24–32. https://doi.org/10.1080/00393541.1981.11650299
doi: 10.1080/00393541.1981.11650299
Sha, L. Z., Toh, Y. N., Remington, R. W., & Jiang, Y. V. (2020). Perceptual learning in the identification of lung cancer in chest radiographs. Cognitive Research: Principles and Implications, 5(1), 4. https://doi.org/10.1186/s41235-020-0208-x
doi: 10.1186/s41235-020-0208-x
Simons, D. J., & Levin, D. T. (1998). Failure to detect changes to people during a real-world interaction. Psychonomic Bulletin & Review, 5(4), 644–649. https://doi.org/10.3758/BF03208840
doi: 10.3758/BF03208840
Sisk, C. A., & Lee, V. G. (2022). Concurrent target detection is associated with better memory for object exemplars. Psychonomic Bulletin & Review, 29(1), 159–168. https://doi.org/10.3758/s13423-021-01983-0
doi: 10.3758/s13423-021-01983-0
Spataro, P., Mulligan, N. W., & Rossi-Arnaud, C. (2013). Divided attention can enhance memory encoding: The attentional boost effect in implicit memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1223–1231. https://doi.org/10.1037/a0030907
doi: 10.1037/a0030907
pubmed: 23356238
Spataro, P., Mulligan, N. W., & Rossi-Arnaud, C. (2015). Limits to the attentional boost effect: The moderating influence of orthographic distinctiveness. Psychonomic Bulletin & Review, 22(4), 987–992. https://doi.org/10.3758/s13423-014-0767-2
doi: 10.3758/s13423-014-0767-2
Spataro, P., Mulligan, N. W., Bechi Gabrielli, G., & Rossi-Arnaud, C. (2017). Divided attention enhances explicit but not implicit conceptual memory: An item-specific account of the attentional boost effect. Memory, 25(2), 170–175. https://doi.org/10.1080/09658211.2016.1144769
doi: 10.1080/09658211.2016.1144769
pubmed: 26881481
Swallow, K. M., & Jiang, Y. V. (2010). The Attentional Boost Effect: Transient Increases in Attention to One Task Enhance Performance in a Second Task. Cognition, 115(1), 118–132. https://doi.org/10.1016/j.cognition.2009.12.003
doi: 10.1016/j.cognition.2009.12.003
pubmed: 20080232
pmcid: 2830300
Swallow, K. M., & Jiang, Y. V. (2011). The role of timing in the attentional boost effect. Attention, Perception & Psychophysics, 73(2), 389–404. https://doi.org/10.3758/s13414-010-0045-y
doi: 10.3758/s13414-010-0045-y
Swallow, K. M., & Jiang, Y. V. (2013). Attentional load and attentional boost: A review of data and theory. Frontiers in Psychology, 4, 274. https://doi.org/10.3389/fpsyg.2013.00274
doi: 10.3389/fpsyg.2013.00274
pubmed: 23730294
pmcid: 3657623
Swallow, K. M., & Jiang, Y. V. (2014). The attentional boost effect really is a boost: Evidence from a new baseline. Attention, Perception, & Psychophysics, 76(5), 1298–1307. https://doi.org/10.3758/s13414-014-0677-4
doi: 10.3758/s13414-014-0677-4
Toh, Y. N., & Lee, V. G. (2022). Response, rather than target detection, triggers the attentional boost effect in visual search. Journal of Experimental Psychology: Human Perception and Performance, 48(1), 77–93. https://doi.org/10.1037/xhp0000977
doi: 10.1037/xhp0000977
pubmed: 35073145
Yassa, M. A., & Stark, C. E. L. (2011). Pattern separation in the hippocampus. Trends in Neurosciences, 34(10), 515–525. https://doi.org/10.1016/j.tins.2011.06.006
doi: 10.1016/j.tins.2011.06.006
pubmed: 21788086
pmcid: 3183227