Effect of heat stress on DNA damage: a systematic literature review.
DNA damage
DNA replication
Heat shock
Heat strain
Heat stress
Journal
International journal of biometeorology
ISSN: 1432-1254
Titre abrégé: Int J Biometeorol
Pays: United States
ID NLM: 0374716
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
received:
23
06
2022
accepted:
16
08
2022
revised:
27
07
2022
pubmed:
1
10
2022
medline:
10
11
2022
entrez:
30
9
2022
Statut:
ppublish
Résumé
Thermal stress has a direct effect on various types of DNA damage, which depends on the stage of the cell cycle when the cell is exposed to different climate conditions. A literature review was conducted to systematically investigate and assess the overall effect of heat stress and DNA damage following heat exposure. In this study, electronic databases including PubMed, Scopus, and Web of Science were searched to find relevant literature on DNA damage in different ambient temperatures. Outcomes included (1) measurement of DNA damage in heat exposure, (2) three different quantification methods (comet assay, 8-hydroxy-2-deoxyguanosine (8-OHdG), and γ-H2AX), and (3) protocols used for moderate (31) and high temperatures (42). The evidence shows that long exposure and very high temperature can induce an increase in DNA damage through aggregate in natural proteins, ROS generation, cell death, and reproductive damage in hot-humid and hot-dry climate conditions. A substantial increase in DNA damage occurs following acute heat stress exposure, especially in tropical and subtropical climate conditions. The results of this systematic literature review showed a positive association between thermal stress exposure and inhibition of repair of DNA damage.
Identifiants
pubmed: 36178536
doi: 10.1007/s00484-022-02351-w
pii: 10.1007/s00484-022-02351-w
doi:
Substances chimiques
8-Hydroxy-2'-Deoxyguanosine
88847-89-6
Types de publication
Systematic Review
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
2147-2158Informations de copyright
© 2022. The Author(s) under exclusive licence to International Society of Biometeorology.
Références
Alekseenko LL, Zemelko VI, Zenin VV, Pugovkina NA, Kozhukharova IV, Kovaleva ZV, ..., Nikolsky NN (2012a) Heat shock induces apoptosis in human embryonic stem cells but a premature senescence phenotype in their differentiated progeny. Cell Cycle 11(17):3260-3269. https://doi.org/10.4161/cc.21595
Beachy SH, Repasky EA (2011) Toward establishment of temperature thresholds for immunological impact of heat exposure in humans. Int J Hyperth 27(4):344–352
doi: 10.3109/02656736.2011.562873
Bettaieb A, Averill-Bates DA (2015) Thermotolerance induced at a mild temperature of 40°C alleviates heat shock-induced ER stress and apoptosis in HeLa cells. Biochimica Et Biophysica Acta - Molecular Cell Research 1853(1):52–62. https://doi.org/10.1016/j.bbamcr.2014.09.016
doi: 10.1016/j.bbamcr.2014.09.016
Bierkens JG (2000) Applications and pitfalls of stress-proteins in biomonitoring. Toxicology 153(1–3):61–72
doi: 10.1016/S0300-483X(00)00304-8
Dubrez L, Causse S, Borges Bonan N, Dumetier B, Garrido C (2020) Heat-shock proteins: chaperoning DNA repair. Oncogene 39(3):516–529. https://doi.org/10.1038/s41388-019-1016-y
doi: 10.1038/s41388-019-1016-y
Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutation Research/reviews in Mutation Research 567(1):1–61
doi: 10.1016/j.mrrev.2003.11.001
Feng H, Sun L, Li Y, Yang B (1998) Study on induced mutagenesis interaction of the high temperature and/or cigarette smoke. Wei sheng yan jiu= Journal of hygiene research, 27(6):379–381
Golbabaei F, Heydari A, Moradi G, Dehghan H, Moradi A, Habibi P (2020) The effect of cooling vests on physiological and perceptual responses: a systematic review. International J Occup Saf Ergon(just-accepted) 1–36.
Habibi P, Momeni R, Dehghan H (2015) Relationship of environmental, physiological, and perceptual heat stress indices in Iranian Men. International Journal of Preventive Medicine 6
Habibi, P., Moradi, G., Moradi, A., & Golbabaei, F. (2021a). A review on advanced functional photonic fabric for enhanced thermoregulating performance. Environmental Nanotechnology, Monitoring & Management, 100504.
Habibi P, Moradi G, Moradi A, Heydari A (2021b) The impacts of climate change on occupational heat strain in outdoor workers: a systematic review. Urban Climate 36:100770
doi: 10.1016/j.uclim.2021.100770
Harrouk W, Codrington A, Vinson R, Robaire B, Hales BF (2000) Paternal exposure to cyclophosphamide induces DNA damage and alters the expression of DNA repair genes in the rat preimplantation embryo. Mutation Research/DNA Repair 461(3):229–241
doi: 10.1016/S0921-8777(00)00053-7
Houston BJ, Nixon B, Martin JH, De Iuliis GN, Trigg NA, Bromfield EG, ..., Aitken RJ (2018) Heat exposure induces oxidative stress and DNA damage in the male germ line. Biol Reprod 98(4):593-606
Hunt CR, Pandita RK, Laszlo A, Higashikubo R, Agarwal M, Kitamura T, ..., Pandita TK (2007) Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res 67(7):3010-3017. https://doi.org/10.1158/0008-5472.can-06-4328
Kampinga HH, Laszlo A, Takahashi A, Mori E, Ohnishi T (2005) DNA double strand breaks do not play a role in heat-induced cell killing [1] (multiple letters). Can Res 65(22):10632–10633. https://doi.org/10.1158/0008-5472.CAN-05-0006
doi: 10.1158/0008-5472.CAN-05-0006
Kantidze OL, Velichko AK, Luzhin AV, Razin SV (2016) Heat Stress-Induced DNA Damage Acta Naturae 8(2):75–78. https://doi.org/10.32607/20758251-2016-8-2-75-78
doi: 10.32607/20758251-2016-8-2-75-78
Kjellstrom T, Lemke B, Hyatt O, Otto M (2014) Climate change and occupational health: a South African perspective. Samj South Afr Med J 104(8), 586-+. https://doi.org/10.7196/samj.8646
Laszlo A, Fleischer I (2009) The heat-induced-H2AX response does not play a role in hyperthermic cell killing. Int J Hyperth 25(3):199–209. https://doi.org/10.1080/02656730802631775
doi: 10.1080/02656730802631775
Lepock JR, Borrelli MJ (2005) How do cells respond to their thermal environment? Int J Hyperth 21(8):681–687. https://doi.org/10.1080/02656730500307298
doi: 10.1080/02656730500307298
Liu FW, Liu FC, Wang YR, Tsai HI, Yu HP (2015) Aloin protects skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PloS one 10(12). https://doi.org/10.1371/journal.pone.0143528
MacLachlan TK, Sang N, Giordano A (1995) Cyclins, cyclin-dependent kinases and cdk inhibitors: implications in cell cycle control and cancer. Critical Reviews™ in Eukaryotic Gene Expression 5(2)
Maghsudlu M, Yazd EF (2017) Heat-induced inflammation and its role in esophageal cancer. J Dig Dis 18(8):431–444. https://doi.org/10.1111/1751-2980.12511
doi: 10.1111/1751-2980.12511
Mah L, El-Osta A, Karagiannis T (2010) γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24(4):679–686
doi: 10.1038/leu.2010.6
Maroni P, Bendinelli P, Tiberio L, Rovetta F, Piccoletti R, Schiaffonati L (2003) In vivo heat-shock response in the brain: signalling pathway and transcription factor activation. Brain Res Mol Brain Res 119(1):90–99. https://doi.org/10.1016/j.molbrainres.2003.08.018
doi: 10.1016/j.molbrainres.2003.08.018
Milani V, Horsman M (2008) Cellular and vascular effects of hyperthermia. Int J Hyperth 24(1):1–2. https://doi.org/10.1080/02656730701858313
doi: 10.1080/02656730701858313
Miyagawa R, Mizuno R, Watanabe K, Ijiri K (2012) Formation of tRNA granules in the nucleus of heat-induced human cells. Biochem Biophys Res Commun 418(1):149–155. https://doi.org/10.1016/j.bbrc.2011.12.150
doi: 10.1016/j.bbrc.2011.12.150
Mohammadi B, Safaiyan A, Habibi P, Moradi G (2021) Evaluation of the acoustic performance of polyurethane foams embedded with rock wool fibers at low-frequency range; design and construction. Appl Acoust 182:108223
doi: 10.1016/j.apacoust.2021.108223
Nam JW, Kim SY, Yoon T, Lee YJ, Kil YS, Lee YS, Seo EK (2013) Heat shock factor 1 inducers from the bark of Eucommia ulmoides as cytoprotective agents. Chem Biodivers 10(7):1322–1327. https://doi.org/10.1002/cbdv.201200401
doi: 10.1002/cbdv.201200401
Nasr MA, Dovbeshko GI, Bearne SL, El-Badri N, Matta CF (2019) Heat shock proteins in the “hot” mitochondrion: identity and putative roles. Bioessays 41(9). https://doi.org/10.1002/bies.201900055
Nezhad FS, Lavvaf A, Karimi S (2013) Influence of heat stress on DNA damage on sheep’s Sertoli cells. International Research Journal of Applied and Basic Sciences 6(10):1396–1400
Paul C, Murray AA, Spears N, Saunders PT (2008) A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction 136(1):73–84. https://doi.org/10.1530/rep-08-0036
doi: 10.1530/rep-08-0036
Paul C, Teng S, Saunders PT (2009) A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol Reprod 80(5):913–919. https://doi.org/10.1095/biolreprod.108.071779
doi: 10.1095/biolreprod.108.071779
Penã ST, Gummow B, Parker AJ, Paris DBBP (2017) Revisiting summer infertility in the pig: could heat stress-induced sperm DNA damage negatively affect early embryo development? Animal Production Science 57(10):1975–1983. https://doi.org/10.1071/AN16079
doi: 10.1071/AN16079
Peña ST, Stone F, Gummow B, Parker AJ, Paris DBBP (2019) Tropical summer induces DNA fragmentation in boar spermatozoa: implications for evaluating seasonal infertility. Reprod Fertil Dev 31(3):590–601. https://doi.org/10.1071/RD18159
doi: 10.1071/RD18159
Petrova NV, Velichko AK, Razin SV, Kantidze OL (2016) Early S-phase cell hypersensitivity to heat stress. Cell Cycle 15(3):337–344. https://doi.org/10.1080/15384101.2015.1127477
doi: 10.1080/15384101.2015.1127477
Prandini MN, Neves A, Lapa AJ, Stavale JN (2005) Mild hypothermia reduces polymorphonuclear leukocytes infiltration in induced brain inflammation. Arq Neuropsiquiatr 63(3B):779–784. https://doi.org/10.1590/s0004-282x2005000500012
doi: 10.1590/s0004-282x2005000500012
Raaphorst GP, LeBlanc JM, Li LF, Yang DP (2005) Hyperthermia responses in cell lines with normal and deficient DNA repairs systems. J Therm Biol 30(6):478–484. https://doi.org/10.1016/j.jtherbio.2005.05.010
doi: 10.1016/j.jtherbio.2005.05.010
Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266
doi: 10.1016/j.molcel.2010.10.006
Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ (2001) Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol Reprod 65(1):229–239
doi: 10.1095/biolreprod65.1.229
Roti Roti JL, Pandita RK, Mueller JD, Novak P, Moros EG, Laszlo A (2010) Severe, short-duration (0–3 min) heat shocks (50–52°C) inhibit the repair of DNA damage. Int J Hyperth 26(1):67–78. https://doi.org/10.3109/02656730903417947
doi: 10.3109/02656730903417947
Ryabchenko NM, Rodionova NK, Sychevska IS, Muzalev II, Mykhailenko VM, Druzhina MO (2013) Genotoxic effects of radiation and hyperthermia in linear mice with different radiation sensitivity. Cytol Genet 47(1):39–43. https://doi.org/10.3103/s0095452713010088
doi: 10.3103/s0095452713010088
Shamseer LMD, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. Bmj 2:7647
doi: 10.1136/bmj.g7647
Sirriyeh R, Lawton R, Gardner P, Armitage G (2012) Reviewing studies with diverse designs: the development and evaluation of a new tool. J Eval Clin Pract 18(4):746–752
doi: 10.1111/j.1365-2753.2011.01662.x
Stocker AJ, Madalena CR, Gorab E (2006) The effects of temperature shock on transcription and replication in Rhynchosciara americana (Diptera: Sciaridae). Genetica 126(3):277–290. https://doi.org/10.1007/s10709-005-7407-8
doi: 10.1007/s10709-005-7407-8
Tabuchi Y, Furusawa Y, Kariya A, Wada S, Ohtsuka K, Kondo T (2013) Common gene expression patterns responsive to mild temperature hyperthermia in normal human fibroblastic cells. Int J Hyperth 29(1):38–50. https://doi.org/10.3109/02656736.2012.753163
doi: 10.3109/02656736.2012.753163
Tang-Chun W, Han-Zhen H, Tanguay RM, Yang W, Dai-Gen X, Currie RW, ..., Guo-gao Z (1995) The combined effects of high temperature and carbon monoxide on heat stress response. J Tongji Med Univ 15(3):178-183
Tramontano F, Malanga M, Farina B, Jones R, Quesada P (2000) Heat stress reduces poly (ADPR) polymerase expression in rat testis. Mol Hum Reprod 6(7):575–581
doi: 10.1093/molehr/6.7.575
Van’t Veer LJ, Dai H, Van De Vijver MJ, He YD, Hart AA, Mao M, . . ., Witteveen AT (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871): 530–536.
Vanos J, Vecellio DJ, Kjellstrom T (2019) Workplace heat exposure, health protection, and economic impacts: a case study in Canada. Am J Ind Med 62(12):1024–1037. https://doi.org/10.1002/ajim.22966
doi: 10.1002/ajim.22966
Velichko AK, Petrova NV, Kantidze OL, Razin SV (2012) Dual effect of heat shock on DNA replication and genome integrity. Mol Biol Cell 23(17):3450–3460. https://doi.org/10.1091/mbc.E11-12-1009
doi: 10.1091/mbc.E11-12-1009
Velichko AK, Petrova NV, Razin SV, Kantidze OL (2015) Mechanism of heat stress-induced cellular senescence elucidates the exclusive vulnerability of early S-phase cells to mild genotoxic stress. Nucleic Acids Res 43(13):6309–6320. https://doi.org/10.1093/nar/gkv573
doi: 10.1093/nar/gkv573
Venugopal V, Krishnamoorthy M, Venkatesan V, Jaganathan V, Paul S (2018) Occupational heat stress, DNA damage and heat shock protein—a review. Medical Research Archives 6(1)
Venugopal V, Krishnamoorthy M, Venkatesan V, Jaganathan V, Shanmugam R, Kanagaraj K, Paul SF (2019) Association between occupational heat stress and DNA damage in lymphocytes of workers exposed to hot working environments in a steel industry in Southern India. Temperature 6(4):346–359
doi: 10.1080/23328940.2019.1632144
Wu T, Chen S, Xiao C, Wang C, Pan Q, Wang Z, ..., Tanguay RM (2001) Presence of antibody against the inducible Hsp71 in patients with acute heat-induced illness. Cell Stress Chaperones 6(2):113
Xiang JJ, Bi P, Pisaniello D, Hansen A (2014) Health impacts of workplace heat exposure: an epidemiological review. Ind Health 52(2):91–101. https://doi.org/10.2486/indhealth.2012-0145
doi: 10.2486/indhealth.2012-0145
Yaeram J, Setchell B, Maddocks S (2006) Effect of heat stress on the fertility of male mice in vivo and in vitro. Reprod Fertil Dev 18(6):647–653
doi: 10.1071/RD05022
Yan Y-E, Zhao Y-Q, Wang H, Fan M (2006) Pathophysiological factors underlying heatstroke. Med Hypotheses 67(3):609–617
doi: 10.1016/j.mehy.2005.12.048
Yang X, Yuan J, Sun J, Wang H, Liang H, Bai Y, ..., Wang J (2008) Association between heat-shock protein 70 gene polymorphisms and DNA damage in peripheral blood lymphocytes among coke-oven workers. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 649(1-2):221-229
Yili X, Tangchun W, Yongxing Z, Tanguay R, Nicole L, Ye Y, Guogao Z (1997) Preliminary studies on the relationship between autoantibodies to heat stress proteins and heat injury of pilots during acute heat stress. J Tongji Med Univ 17(2):83–85
doi: 10.1007/BF02888240
Zhu B-K, Setchell BP (2004) Effects of paternal heat stress on the in vivo development of preimplantation embryos in the mouse. Reprod Nutr Dev 44(6):617–629
doi: 10.1051/rnd:2004064