The Arabidopsis transcription factor TCP9 modulates root architectural plasticity, reactive oxygen species-mediated processes, and tolerance to cyst nematode infections.
Heterodera schachtii
TCP transcription factor
biotic stress
cyst nematodes
damage
reactive oxygen species
root plasticity
root system architecture
tolerance
Journal
The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397
Informations de publication
Date de publication:
11 2022
11 2022
Historique:
revised:
06
09
2022
received:
20
04
2022
accepted:
27
09
2022
pubmed:
2
10
2022
medline:
25
11
2022
entrez:
1
10
2022
Statut:
ppublish
Résumé
Infections by root-feeding nematodes have profound effects on root system architecture and consequently shoot growth of host plants. Plants harbor intraspecific variation in their growth responses to belowground biotic stresses by nematodes, but the underlying mechanisms are not well understood. Here, we show that the transcription factor TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR-9 (TCP9) modulates root system architectural plasticity in Arabidopsis thaliana in response to infections by the endoparasitic cyst nematode Heterodera schachtii. Young seedlings of tcp9 knock-out mutants display a significantly weaker primary root growth inhibition response to cyst nematodes than wild-type Arabidopsis. In older plants, tcp9 reduces the impact of nematode infections on the emergence and growth of secondary roots. Importantly, the altered growth responses by tcp9 are most likely not caused by less biotic stress on the root system, because TCP9 does not affect the number of infections, nematode development, and size of the nematode-induced feeding structures. RNA-sequencing of nematode-infected roots of the tcp9 mutants revealed differential regulation of enzymes involved in reactive oxygen species (ROS) homeostasis and responses to oxidative stress. We also found that root and shoot growth of tcp9 mutants is less sensitive to exogenous hydrogen peroxide and that ROS accumulation in nematode infection sites in these mutants is reduced. Altogether, these observations demonstrate that TCP9 modulates the root system architectural plasticity to nematode infections via ROS-mediated processes. Our study further points at a novel regulatory mechanism contributing to the tolerance of plants to root-feeding nematodes by mitigating the impact of belowground biotic stresses.
Identifiants
pubmed: 36181710
doi: 10.1111/tpj.15996
pmc: PMC9828446
doi:
Substances chimiques
Reactive Oxygen Species
0
Transcription Factors
0
Arabidopsis Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1070-1083Informations de copyright
© 2022 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Références
Plant J. 2002 May;30(3):337-48
pubmed: 12000681
J Integr Plant Biol. 2020 Jul;62(7):912-926
pubmed: 31490027
Mol Plant. 2017 Dec 4;10(12):1571-1574
pubmed: 28893715
Plant Physiol. 2013 Mar;161(3):1375-91
pubmed: 23292790
Plant Physiol. 2012 Aug;159(4):1511-23
pubmed: 22718775
Phytopathology. 2009 Feb;99(2):194-202
pubmed: 19245333
Development. 2016 Sep 15;143(18):3328-39
pubmed: 27402709
J Nematol. 2000 Jun;32(2):166-73
pubmed: 19270962
Plant J. 2015 Apr;82(1):151-62
pubmed: 25702611
Plant Signal Behav. 2015;10(7):e1044192
pubmed: 26039357
Plant Physiol. 2021 Nov 3;187(3):1057-1070
pubmed: 34734279
Front Plant Sci. 2016 Aug 31;7:1335
pubmed: 27630659
Nat Protoc. 2016 Sep;11(9):1650-67
pubmed: 27560171
Plant Cell. 2017 Aug;29(8):1806-1821
pubmed: 28808136
Plant Mol Biol. 2022 Feb;108(3):257-275
pubmed: 35050466
Front Plant Sci. 2016 Dec 21;7:1930
pubmed: 28066483
Mol Plant Pathol. 2013 Dec;14(9):946-61
pubmed: 23809086
Sci Rep. 2015 Apr 29;5:9998
pubmed: 25925167
Mol Plant Pathol. 2018 Jul;19(7):1690-1704
pubmed: 29240311
Plant Cell Rep. 2021 Oct;40(10):1971-1987
pubmed: 34392380
PLoS One. 2013 Aug 05;8(8):e70289
pubmed: 23940555
Plant J. 2007 Apr;50(2):347-63
pubmed: 17376166
Plant Physiol. 2011 Feb;155(2):866-80
pubmed: 21156858
New Phytol. 2019 Dec;224(4):1627-1641
pubmed: 31433873
Mol Plant Microbe Interact. 2000 Oct;13(10):1121-9
pubmed: 11043473
Biochem J. 2011 Apr 1;435(1):143-55
pubmed: 21241251
Genome Biol. 2016 Apr 12;17:66
pubmed: 27072794
Genesis. 2015 Aug;53(8):474-85
pubmed: 26201819
Plant Signal Behav. 2011 Nov;6(11):1778-86
pubmed: 22212122
Plant J. 1999 Apr;18(2):215-22
pubmed: 10363373
Funct Integr Genomics. 2020 Jul;20(4):537-550
pubmed: 32034565
Plant Physiol. 2014 Nov;166(3):1387-402
pubmed: 25271266
PLoS Genet. 2017 Jun 19;13(6):e1006856
pubmed: 28628608
Genes (Basel). 2019 Aug 26;10(9):
pubmed: 31455029
Gene. 2020 Oct 20;758:144954
pubmed: 32683079
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
Cell. 2010 Nov 12;143(4):606-16
pubmed: 21074051
Plant Mol Biol. 2022 Jan;108(1-2):93-103
pubmed: 34982361
Ann Bot. 2017 Jul 1;120(1):171-180
pubmed: 28586427
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15267-72
pubmed: 25288754
Plant Physiol. 2010 Feb;152(2):968-84
pubmed: 19965964
J Exp Bot. 2021 Aug 11;72(16):5795-5806
pubmed: 34106236
Sci Signal. 2014 Apr 08;7(320):ra33
pubmed: 24714570