Facilitation of dependent transfers with functional neuromuscular stimulation: a computer simulation study.
Back injury
Functional neuromuscular stimulation (FNS)
Mathematical model
Spinal cord injury (SCI)
Journal
Medical & biological engineering & computing
ISSN: 1741-0444
Titre abrégé: Med Biol Eng Comput
Pays: United States
ID NLM: 7704869
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
received:
18
01
2022
accepted:
17
09
2022
pubmed:
4
10
2022
medline:
15
11
2022
entrez:
3
10
2022
Statut:
ppublish
Résumé
A two-part simulation process was developed to investigate the facilitation of vertical patient lifts with functional neuromuscular stimulation (FNS) in individuals with spinal cord injury (SCI). First, external lifting forces representing caregiver assistance were applied to a 3D musculoskeletal model representing the patient and optimized to enforce a specific lifting trajectory during a forward dynamic simulation. The process was repeated with and without the activation of the knee, hip, and trunk extensor muscles of the patient model to represent contractions of the paralyzed muscles generated via FNS. Secondly, the spinal compression experienced by a caregiver at the L5/S1 joint while generating these external lifting forces was estimated using a second musculoskeletal model representing the caregiver. Simulation without muscle activation predicted spinal compression in the caregiver model approximately 1.3 × the National Institute for Occupational Safety and Health (NIOSH) recommended "Action Limit." Comparatively, simulations with two unique patterns of muscle activation both predicted caregiver spinal compressions below NIOSH recommendations. These simulation results support the hypothesis that FNS activation of a patient's otherwise paralyzed muscles would lower the force output required of a caregiver during a dependent transfer, thus lowering the spinal compression and risk of injury experienced by a caregiver.
Identifiants
pubmed: 36192593
doi: 10.1007/s11517-022-02672-3
pii: 10.1007/s11517-022-02672-3
pmc: PMC9649884
mid: NIHMS1841316
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3435-3445Subventions
Organisme : NINDS NIH HHS
ID : R01 NS101043
Pays : United States
Organisme : NIH HHS
ID : 1R01NS101043-01
Pays : United States
Organisme : U.S. Department of Defense
ID : W81XWH-17-1-0240
Organisme : NIH HHS
ID : 1R01NS101043-01
Pays : United States
Informations de copyright
© 2022. International Federation for Medical and Biological Engineering.
Références
J Biomech Eng. 2015 Aug;137(8):081003
pubmed: 25901907
Res Nurs Health. 2015 Jun;38(3):183-93
pubmed: 25914203
Clin Biomech (Bristol, Avon). 2014 Jan;29(1):7-13
pubmed: 24246115
Paraplegia. 1994 Aug;32(8):573-9
pubmed: 7970864
Appl Ergon. 2001 Jun;32(3):199-214
pubmed: 11394461
Med Biol Eng Comput. 2020 Apr;58(4):739-751
pubmed: 31974873
J Rehabil Res Dev. 2001 Nov-Dec;38(6):609-17
pubmed: 11767968
Spine (Phila Pa 1976). 2005 Oct 15;30(20):2334-41
pubmed: 16227898
Spine (Phila Pa 1976). 1990 Dec;15(12):1311-6
pubmed: 2149209
PLoS Comput Biol. 2020 Dec 28;16(12):e1008493
pubmed: 33370252
Occup Environ Med. 2003 Nov;60(11):864-9
pubmed: 14573717
IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50
pubmed: 18018689
Arch Phys Med Rehabil. 2012 May;93(5):896-904
pubmed: 22541312
Physiother Res Int. 2000;5(2):111-28
pubmed: 10863717
PLoS Comput Biol. 2018 Jul 26;14(7):e1006223
pubmed: 30048444
Int J Occup Saf Ergon. 2014;20(1):127-37
pubmed: 24629874