A review study of fetal circulatory models to develop a digital twin of a fetus in a perinatal life support system.
digital twin
fetal cardiovascular system
mathematical models
perinatal life support system
review
Journal
Frontiers in pediatrics
ISSN: 2296-2360
Titre abrégé: Front Pediatr
Pays: Switzerland
ID NLM: 101615492
Informations de publication
Date de publication:
2022
2022
Historique:
received:
08
04
2022
accepted:
16
08
2022
entrez:
10
10
2022
pubmed:
11
10
2022
medline:
11
10
2022
Statut:
epublish
Résumé
Preterm birth is the main cause of neonatal deaths with increasing mortality and morbidity rates with decreasing GA at time of birth. Currently, premature infants are treated in neonatal intensive care units to support further development. However, the organs of, especially, extremely premature infants (born before 28 weeks of GA) are not mature enough to function optimally outside the womb. This is seen as the main cause of the high morbidity and mortality rates in this group. A liquid-filled incubator, a so-called PLS system, could potentially improve these numbers for extremely premature infants, since this system is designed to mimic the environment of the natural womb. To support the development and implementation of such a complex system and to interpret vital signals of the fetus during a PLS system operation, a digital twin is proposed. This mathematical model is connected with a manikin representing the digital and physical twin of the real-life PLS system. Before developing a digital twin of a fetus in a PLS system, its functional and technical requirements are defined and existing mathematical models are evaluated. This review summarizes existing 0D and 1D fetal circulatory models that potentially could be (partly) adopted for integration in a digital twin of a fetus in a PLS system based on predefined requirements. The 0D models typically describe hemodynamics and/or oxygen transport during specific events, such as the transition from fetus to neonate. Furthermore, these models can be used to find hemodynamic differences between healthy and pathological physiological states. Rather than giving a global description of an entire cardiovascular system, some studies focus on specific organs or vessels. In order to analyze pressure and flow wave profiles in the cardiovascular system, transmission line or 1D models are used. As for now, these models do not include oxygen transport. This study shows that none of the models identified in literature meet all the requirements relevant for a digital twin of a fetus in a PLS system. Nevertheless, it does show the potential to develop this digital twin by integrating (parts) of models into a single model.
Sections du résumé
Background
UNASSIGNED
Preterm birth is the main cause of neonatal deaths with increasing mortality and morbidity rates with decreasing GA at time of birth. Currently, premature infants are treated in neonatal intensive care units to support further development. However, the organs of, especially, extremely premature infants (born before 28 weeks of GA) are not mature enough to function optimally outside the womb. This is seen as the main cause of the high morbidity and mortality rates in this group. A liquid-filled incubator, a so-called PLS system, could potentially improve these numbers for extremely premature infants, since this system is designed to mimic the environment of the natural womb. To support the development and implementation of such a complex system and to interpret vital signals of the fetus during a PLS system operation, a digital twin is proposed. This mathematical model is connected with a manikin representing the digital and physical twin of the real-life PLS system. Before developing a digital twin of a fetus in a PLS system, its functional and technical requirements are defined and existing mathematical models are evaluated.
Method and results
UNASSIGNED
This review summarizes existing 0D and 1D fetal circulatory models that potentially could be (partly) adopted for integration in a digital twin of a fetus in a PLS system based on predefined requirements. The 0D models typically describe hemodynamics and/or oxygen transport during specific events, such as the transition from fetus to neonate. Furthermore, these models can be used to find hemodynamic differences between healthy and pathological physiological states. Rather than giving a global description of an entire cardiovascular system, some studies focus on specific organs or vessels. In order to analyze pressure and flow wave profiles in the cardiovascular system, transmission line or 1D models are used. As for now, these models do not include oxygen transport.
Conclusion
UNASSIGNED
This study shows that none of the models identified in literature meet all the requirements relevant for a digital twin of a fetus in a PLS system. Nevertheless, it does show the potential to develop this digital twin by integrating (parts) of models into a single model.
Identifiants
pubmed: 36210952
doi: 10.3389/fped.2022.915846
pmc: PMC9532745
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
915846Informations de copyright
Copyright © 2022 van Willigen, van der Hout-van der Jagt, Huberts and van de Vosse.
Déclaration de conflit d'intérêts
MH is shareholder in Juno Perinatal Healthcare BV, Netherlands. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Med Eng Phys. 2002 May;24(4):285-94
pubmed: 11996847
Matern Health Neonatol Perinatol. 2019 Apr 12;5:5
pubmed: 31011431
Eur J Obstet Gynecol Reprod Biol. 2003 Sep 22;110 Suppl 1:S99-107
pubmed: 12965097
Ultrasound Med Biol. 1988;14(5):365-76
pubmed: 3051611
Arch Dis Child Fetal Neonatal Ed. 2022 Sep;107(5):467-474
pubmed: 35236745
J Biomech. 2020 May 7;104:109707
pubmed: 32220425
Eur J Obstet Gynecol Reprod Biol. 1985 Nov;20(5):305-10
pubmed: 3935497
Ultrasound Obstet Gynecol. 2006 Aug;28(2):126-36
pubmed: 16826560
Arch Gynecol Obstet. 2017 May;295(5):1061-1077
pubmed: 28285426
Am J Physiol Regul Integr Comp Physiol. 2006 Nov;291(5):R1222-33
pubmed: 16778066
Anesth Analg. 2004 Dec;99(6):1655-1664
pubmed: 15562049
J Biomech. 2016 Aug 16;49(12):2466-73
pubmed: 26921915
J Med Ethics. 2018 Nov;44(11):751-755
pubmed: 30097459
Obstet Gynecol. 1996 Feb;87(2):163-8
pubmed: 8559516
Arch Dis Child. 2019 May;104(5):456-465
pubmed: 30413489
Ultrasound Obstet Gynecol. 2014 Sep;44(3):330-7
pubmed: 24615982
Med Eng Phys. 2012 Jun;34(5):579-89
pubmed: 22041128
Eur J Obstet Gynecol Reprod Biol. 1986 Jan;21(1):15-26
pubmed: 2937667
Ann Biomed Eng. 2000 Apr;28(4):442-52
pubmed: 10870901
Am J Physiol. 1999 Jun;276(6):H2204-14
pubmed: 10362705
Microvasc Res. 2017 May;111:88-95
pubmed: 28111314
Early Hum Dev. 2013 Jan;89(1):7-19
pubmed: 22840604
Pediatr Res. 2018 Sep;84(3):348-351
pubmed: 30013152
Int J Artif Organs. 2001 May;24(5):286-96
pubmed: 11420878
Placenta. 2018 Mar;63:1-6
pubmed: 29486850
BMC Pregnancy Childbirth. 2021 Jan 22;21(1):75
pubmed: 33482755
Front Neurosci. 2021 Sep 20;15:721605
pubmed: 34616274
Lancet Glob Health. 2019 Jan;7(1):e37-e46
pubmed: 30389451
Reprod Sci. 2010 Mar;17(3):258-68
pubmed: 20023275
J Biomech. 2016 Aug 16;49(12):2474-80
pubmed: 26920511
Med Biol Eng Comput. 1989 May;27(3):269-76
pubmed: 2601448
J R Soc Interface. 2016 Jan;13(114):20151019
pubmed: 26819334
Arch Dis Child. 2017 Jan;102(1):97-102
pubmed: 27512082
Clin Perinatol. 2012 Dec;39(4):769-83
pubmed: 23164177
Med Eng Phys. 1997 Jun;19(4):327-35
pubmed: 9302672
Front Pediatr. 2022 Jan 19;9:793531
pubmed: 35127593
PLoS Comput Biol. 2014 Jun 12;10(6):e1003667
pubmed: 24921933
Circ Res. 1973 Mar;32(3):314-22
pubmed: 4691336
J Perinatol. 2020 Jun;40(6):833-843
pubmed: 31767981
Am J Physiol. 1980 Sep;239(3):R317-25
pubmed: 7435602
Ultrasound Med Biol. 1996;22(6):707-17
pubmed: 8865566
Early Hum Dev. 2013 Jun;89(6):361-9
pubmed: 23273866
Pediatr Res. 2022 Jan;91(1):116-128
pubmed: 33731808
Int J Biomed Comput. 1992 Aug;31(2):127-39
pubmed: 1517000
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5449-53
pubmed: 19163950
Simul Healthc. 2006 Jan;1 Spec no.:4-9
pubmed: 19088566
Eur J Ultrasound. 1998 Apr;7(2):129-43
pubmed: 9614282
Simul Healthc. 2009 Spring;4(1):49-53
pubmed: 19212251
Ultrasound Med Biol. 1992;18(6-7):545-51
pubmed: 1413266
Nat Commun. 2017 Apr 25;8:15112
pubmed: 28440792
Lancet. 2012 Feb 4;379(9814):445-52
pubmed: 22244654
Best Pract Res Clin Obstet Gynaecol. 2018 Oct;52:3-12
pubmed: 29779863
Med Eng Phys. 2003 Apr;25(3):229-38
pubmed: 12589721
Ultrasound Med Biol. 1990;16(5):449-58
pubmed: 2238251
Ultrasound Obstet Gynecol. 2005 Aug;26(2):162-9
pubmed: 15883983
Am J Physiol. 1995 Nov;269(5 Pt 2):R1267-78
pubmed: 7503319
Am J Obstet Gynecol. 1985 Feb 15;151(4):449-55
pubmed: 3976745
J Biomech. 2000 Sep;33(9):1123-30
pubmed: 10854885
J Biomech. 1969 May;2(2):121-43
pubmed: 16335097
Pediatrics. 2017 Mar;139(3):
pubmed: 28228499
Am J Obstet Gynecol. 2005 Mar;192(3):937-44
pubmed: 15746695
J Biomech. 2018 Oct 5;79:78-87
pubmed: 30146174
J Biomech. 2015 Jun 25;48(9):1662-70
pubmed: 25773588
Pediatr Res. 2010 Feb;67(2):158-65
pubmed: 19809380
Am J Physiol. 1985 Aug;249(2 Pt 2):R192-202
pubmed: 4025577
Med Biol Eng Comput. 1997 May;35(3):223-30
pubmed: 9246856
Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1943-54
pubmed: 15550528
Ultrasound Med Biol. 1992;18(6-7):535-44
pubmed: 1413265
Am J Obstet Gynecol. 2011 Oct;205(4):374.e1-9
pubmed: 21864824
Ultrasound Obstet Gynecol. 1995 Oct;6(4):261-71
pubmed: 8590189
Bull Math Biol. 2015 Dec;77(12):2264-93
pubmed: 26582358
Public Health. 2014 May;128(5):399-403
pubmed: 24794180
Med Biol Eng Comput. 2009 Feb;47(2):211-20
pubmed: 18763006
Placenta. 2015 Sep;36(9):981-9
pubmed: 26242709
Am J Physiol Heart Circ Physiol. 2000 Jul;279(1):H149-65
pubmed: 10899052
J Perinatol. 2005 May;25(5):341-8
pubmed: 15861199
Nat Rev Nephrol. 2014 Aug;10(8):466-80
pubmed: 25003615
Biomech Model Mechanobiol. 2017 Aug;16(4):1361-1372
pubmed: 28258413
Acta Biomed. 2015 Jun 29;86 Suppl 1:36-40
pubmed: 26135955
Am J Obstet Gynecol. 2017 Oct;217(4):457.e1-457.e13
pubmed: 28646647
Int J Numer Method Biomed Eng. 2021 Nov;37(11):e3231
pubmed: 31257729
J Physiol. 2016 Mar 1;594(5):1215-30
pubmed: 26496004
Ultrasound Med Biol. 1989;15(5):437-42
pubmed: 2675446
Ann Biomed Eng. 2006 Dec;34(12):1833-45
pubmed: 17048105
Am J Physiol Heart Circ Physiol. 2019 May 1;316(5):H1105-H1112
pubmed: 30794433
Pediatrics. 2009 Feb;123(2):e312-27
pubmed: 19171583
Biomed Eng Online. 2011 Apr 26;10:33
pubmed: 21521508
Ultrasound Obstet Gynecol. 2007 Sep;30(3):287-96
pubmed: 17721916
Ultrasound Med Biol. 2002 Nov-Dec;28(11-12):1421-31
pubmed: 12498937
Acta Obstet Gynecol Scand. 2014 Dec;93(12):1268-75
pubmed: 25175063
Am J Obstet Gynecol. 2020 Nov;223(5):755.e1-755.e20
pubmed: 32380175