Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
11 2022
Historique:
received: 05 07 2021
accepted: 15 08 2022
pubmed: 11 10 2022
medline: 22 11 2022
entrez: 10 10 2022
Statut: ppublish

Résumé

The levels of the thousands of metabolites in the human plasma metabolome are strongly influenced by an individual's genetics and the composition of their diet and gut microbiome. Here, by assessing 1,183 plasma metabolites in 1,368 extensively phenotyped individuals from the Lifelines DEEP and Genome of the Netherlands cohorts, we quantified the proportion of inter-individual variation in the plasma metabolome explained by different factors, characterizing 610, 85 and 38 metabolites as dominantly associated with diet, the gut microbiome and genetics, respectively. Moreover, a diet quality score derived from metabolite levels was significantly associated with diet quality, as assessed by a detailed food frequency questionnaire. Through Mendelian randomization and mediation analyses, we revealed putative causal relationships between diet, the gut microbiome and metabolites. For example, Mendelian randomization analyses support a potential causal effect of Eubacterium rectale in decreasing plasma levels of hydrogen sulfite-a toxin that affects cardiovascular function. Lastly, based on analysis of the plasma metabolome of 311 individuals at two time points separated by 4 years, we observed a positive correlation between the stability of metabolite levels and the amount of variance in the levels of that metabolite that could be explained in our analysis. Altogether, characterization of factors that explain inter-individual variation in the plasma metabolome can help design approaches for modulating diet or the gut microbiome to shape a healthy metabolome.

Identifiants

pubmed: 36216932
doi: 10.1038/s41591-022-02014-8
pii: 10.1038/s41591-022-02014-8
pmc: PMC9671809
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2333-2343

Informations de copyright

© 2022. The Author(s).

Références

Suhre, K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477, 54–60 (2011).
pubmed: 21886157 doi: 10.1038/nature10354
Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543–550 (2014).
pubmed: 24816252 pmcid: 4064254 doi: 10.1038/ng.2982
Bar, N. et al. A reference map of potential determinants for the human serum metabolome. Nature 588, 135–140 (2020).
pubmed: 33177712 doi: 10.1038/s41586-020-2896-2
Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021).
pubmed: 33432175 pmcid: 8353542 doi: 10.1038/s41591-020-01183-8
Tigchelaar, E. F. et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 5, e006772 (2015).
pubmed: 26319774 pmcid: 4554905 doi: 10.1136/bmjopen-2014-006772
Boomsma, D. I. et al. The Genome of the Netherlands: design, and project goals. Eur. J. Hum. Genet. 22, 221–227 (2014).
pubmed: 23714750 doi: 10.1038/ejhg.2013.118
Chen, L. et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184, 2302–2315 (2021).
pubmed: 33838112 doi: 10.1016/j.cell.2021.03.024
Vinke, P. C. et al. Development of the food-based Lifelines Diet Score (LLDS) and its application in 129,369 Lifelines participants. Eur. J. Clin. Nutr. 72, 1111–1119 (2018).
pubmed: 29895847 doi: 10.1038/s41430-018-0205-z
Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019).
pubmed: 30778224 pmcid: 6441384 doi: 10.1038/s41588-019-0350-x
Fuhrer, T., Zampieri, M., Sevin, D. C., Sauer, U. & Zamboni, N. Genomewide landscape of gene–metabolome associations in Escherichia coli. Mol. Syst. Biol. 13, 907 (2017).
pubmed: 28093455 pmcid: 5293155 doi: 10.15252/msb.20167150
Fuhrer, T., Heer, D., Begemann, B. & Zamboni, N. High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection–time-of-flight mass spectrometry. Anal. Chem. 83, 7074–7080 (2011).
pubmed: 21830798 doi: 10.1021/ac201267k
Wang, D. M. et al. Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host Microbe 29, 1802–1814 (2021).
pubmed: 34847370 doi: 10.1016/j.chom.2021.11.003
Kurilshikov, A. et al. Gut microbial associations to plasma metabolites linked to cardiovascular phenotypes and risk: a cross-sectional study. Circ. Res. 124, 1808–1820 (2019).
pubmed: 30971183 doi: 10.1161/CIRCRESAHA.118.314642
Zou, H. & Hastie, T. Regularization and variable selection via the Elastic Net. J. R. Stat. Soc. B 67, 301–320 (2005).
doi: 10.1111/j.1467-9868.2005.00503.x
Wishart, D. S. et al. HMDB 4.0: the Human Metabolome Database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).
pubmed: 29140435 doi: 10.1093/nar/gkx1089
Zhao, Y. et al. Analysis of multiple metabolites of tocopherols and tocotrienols in mice and humans. J. Agric. Food Chem. 58, 4844–4852 (2010).
pubmed: 20222730 pmcid: 2858244 doi: 10.1021/jf904464u
Jiang, Q., Christen, S., Shigenaga, M. K. & Ames, B. N. γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr. 74, 714–722 (2001).
pubmed: 11722951 doi: 10.1093/ajcn/74.6.714
Pallister, T. et al. Hippurate as a metabolomic marker of gut microbiome diversity: modulation by diet and relationship to metabolic syndrome. Sci. Rep. 7, 13670 (2017).
pubmed: 29057986 pmcid: 5651863 doi: 10.1038/s41598-017-13722-4
Razavi, A. C. et al. Novel findings from a metabolomics study of left ventricular diastolic function: the Bogalusa Heart Study. J. Am. Heart Assoc. 9, e015118 (2020).
pubmed: 31992159 pmcid: 7033875 doi: 10.1161/JAHA.119.015118
Trichopoulou, A. & Vasilopoulou, E. Mediterranean diet and longevity. Br. J. Nutr. 84, S205–S209 (2000).
pubmed: 11242471 doi: 10.1079/096582197388554
Krebs-Smith, S. M. et al. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 118, 1591–1602 (2018).
pubmed: 30146071 pmcid: 6719291 doi: 10.1016/j.jand.2018.05.021
Moller, G. et al. A protein diet score, including plant and animal protein, investigating the association with HbA1c and eGFR—the PREVIEW project. Nutrients 9, 763 (2017).
pmcid: 5537877 doi: 10.3390/nu9070763
Khalili, H. et al. Adherence to a Mediterranean diet is associated with a lower risk of later-onset Crohn’s disease: results from two large prospective cohort studies. Gut 69, 1637–1644 (2020).
pubmed: 31900290 doi: 10.1136/gutjnl-2019-319505
Wendel-Vos, G. C., Schuit, A. J., Saris, W. H. & Kromhout, D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J. Clin. Epidemiol. 56, 1163–1169 (2003).
pubmed: 14680666 doi: 10.1016/S0895-4356(03)00220-8
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056 pmcid: 5705698 doi: 10.1038/s41467-017-01261-5
Schlosser, P. et al. Genetic studies of urinary metabolites illuminate mechanisms of detoxification and excretion in humans. Nat. Genet. 52, 167–176 (2020).
pubmed: 31959995 pmcid: 7484970 doi: 10.1038/s41588-019-0567-8
Selinski, S., Blaszkewicz, M., Ickstadt, K., Hengstler, J. G. & Golka, K. Refinement of the prediction of N-acetyltransferase 2 (NAT2) phenotypes with respect to enzyme activity and urinary bladder cancer risk. Arch. Toxicol. 87, 2129–2139 (2013).
pubmed: 24221535 doi: 10.1007/s00204-013-1157-7
Lee, H. H. & Ho, R. H. Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLCO1B1). Br. J. Clin. Pharm. 83, 1176–1184 (2017).
doi: 10.1111/bcp.13207
Group, S. C. et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).
doi: 10.1056/NEJMoa0801936
Yogalingam, G., Muller, V., Hopwood, J. J. & Anson, D. S. Regulation of N-acetylgalactosamine 4-sulfatase expression in retrovirus-transduced feline mucopolysaccharidosis type VI muscle cells. DNA Cell Biol. 18, 187–195 (1999).
pubmed: 10098600 doi: 10.1089/104454999315402
Ohtomo, Y. et al. High-dose mizoribine therapy for childhood-onset frequently relapsing steroid-dependent nephrotic syndrome with cyclosporin nephrotoxicity. Pediatr. Nephrol. 20, 1744–1749 (2005).
pubmed: 16133041 doi: 10.1007/s00467-005-2025-3
Wang, Z. & Zhao, Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 9, 416–431 (2018).
pubmed: 29725935 pmcid: 5960473 doi: 10.1007/s13238-018-0549-0
Wang, Y. et al. Decoding microbial genomes to understand their functional roles in human complex diseases. iMeta 1, e14 (2022).
doi: 10.1002/imt2.14
Seyed Hameed, A. S., Rawat, P. S., Meng, X. & Liu, W. Biotransformation of dietary phytoestrogens by gut microbes: a review on bidirectional interaction between phytoestrogen metabolism and gut microbiota. Biotechnol. Adv. 43, 107576 (2020).
pubmed: 32531317 doi: 10.1016/j.biotechadv.2020.107576
Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).
pubmed: 28114746 pmcid: 5434863 doi: 10.1002/sim.7221
Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).
pubmed: 26050253 pmcid: 4469799 doi: 10.1093/ije/dyv080
Levin, J., Bötzel, K., Giese, A., Vogeser, M. & Lorenzl, S. Elevated levels of methylmalonate and homocysteine in Parkinson’s disease, progressive supranuclear palsy and amyotrophic lateral sclerosis. Dement. Geriatr. Cogn. Disord. 29, 553–559 (2010).
pubmed: 20606437 doi: 10.1159/000314841
Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).
pubmed: 35418674 doi: 10.1038/s41586-022-04567-7
Chen, L. et al. Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nat. Commun. 11, 4018 (2020).
pubmed: 32782301 pmcid: 7419557 doi: 10.1038/s41467-020-17840-y
Karcher, N. et al. Analysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptations. Genome Biol. 21, 138 (2020).
pubmed: 32513234 pmcid: 7278147 doi: 10.1186/s13059-020-02042-y
Chen, L. et al. Genetic and microbial associations to plasma and fecal bile acids in obesity relate to plasma lipids and liver fat content. Cell Rep. 33, 108212 (2020).
pubmed: 33027657 doi: 10.1016/j.celrep.2020.108212
Ríos-Covián, D. et al. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 7, 185 (2016).
pubmed: 26925050 pmcid: 4756104 doi: 10.3389/fmicb.2016.00185
Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10, eaap8914 (2018).
pubmed: 30567928 doi: 10.1126/scitranslmed.aap8914
Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).
pubmed: 25432777 pmcid: 4299606 doi: 10.15252/msb.20145645
Beltowski, J. Hydrogen sulfide in pharmacology and medicine—an update. Pharm. Rep. 67, 647–658 (2015).
doi: 10.1016/j.pharep.2015.01.005
Andreu, V. P. et al. A systematic analysis of metabolic pathways in the human gut microbiota. Preprint at bioRxiv https://doi.org/10.1101/2021.02.25.432841 (2021).
Zeevi, D. et al. Structural variation in the gut microbiome associates with host health. Nature 568, 43–48 (2019).
pubmed: 30918406 doi: 10.1038/s41586-019-1065-y
Ogawa, M., Suzuki, Y., Endo, Y., Kawamoto, T. & Kayama, F. Influence of coffee intake on urinary hippuric acid concentration. Ind. Health 49, 195–202 (2011).
pubmed: 21173531 doi: 10.2486/indhealth.MS1164
Duranton, F. et al. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 23, 1258–1270 (2012).
pubmed: 22626821 pmcid: 3380651 doi: 10.1681/ASN.2011121175
Biegel, E. & Muller, V. Bacterial Na
pubmed: 20921383 pmcid: 2964206 doi: 10.1073/pnas.1010318107
Holland, I. B. & Blight, M. A. ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J. Mol. Biol. 293, 381–399 (1999).
pubmed: 10529352 doi: 10.1006/jmbi.1999.2993
Zheng, D. et al. Urolithin B, a gut microbiota metabolite, protects against myocardial ischemia/reperfusion injury via p62/Keap1/Nrf2 signaling pathway. Pharm. Res. 153, 104655 (2020).
doi: 10.1016/j.phrs.2020.104655
Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10, 4505 (2019).
pubmed: 31582752 pmcid: 6776654 doi: 10.1038/s41467-019-12476-z
Bradley, P. H. & Pollard, K. S. Building a chemical blueprint for human blood. Nature 588, 36–37 (2020).
pubmed: 33177685 doi: 10.1038/d41586-020-03122-6
Wijmenga, C. & Zhernakova, A. The importance of cohort studies in the post-GWAS era. Nat. Genet. 50, 322–328 (2018).
pubmed: 29511284 doi: 10.1038/s41588-018-0066-3
Genome of the Netherlands, C. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat. Genet. 46, 818–825 (2014).
doi: 10.1038/ng.3021
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
pubmed: 19261174 pmcid: 2690996 doi: 10.1186/gb-2009-10-3-r25
Langmead, B., Wilks, C., Antonescu, V. & Charles, R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 35, 421–432 (2019).
pubmed: 30020410 doi: 10.1093/bioinformatics/bty648
Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).
pubmed: 26418763 doi: 10.1038/nmeth.3589
Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).
pubmed: 30377376 pmcid: 6235447 doi: 10.1038/s41592-018-0176-y
Bateman, A. et al. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).
doi: 10.1093/nar/gku989
Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 44, D471–D480 (2016).
pubmed: 26527732 doi: 10.1093/nar/gkv1164
Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).
pubmed: 29059334 doi: 10.1093/nar/gkx935
Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. 44, 139–177 (1982).
Zhernakova, D. V. et al. Individual variations in cardiovascular-disease-related protein levels are driven by genetics and gut microbiome. Nat. Genet. 50, 1524–1532 (2018).
pubmed: 30250126 pmcid: 6241851 doi: 10.1038/s41588-018-0224-7
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
pubmed: 27571263 pmcid: 5157836 doi: 10.1038/ng.3656
McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
pubmed: 27548312 pmcid: 5388176 doi: 10.1038/ng.3643
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol. 57, 289–300 (1995).
Fehrmann, R. S. N. et al. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 7, e1002197 (2011).
pubmed: 21829388 pmcid: 3150446 doi: 10.1371/journal.pgen.1002197
Imhann, F. et al. Proton pump inhibitors affect the gut microbiome. Gut 65, 740–748 (2016).
pubmed: 26657899 doi: 10.1136/gutjnl-2015-310376
Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).
pubmed: 27126040 pmcid: 5240844 doi: 10.1126/science.aad3369
Minelli, C. et al. The use of two-sample methods for Mendelian randomization analyses on single large datasets. Int J. Epidemiol. 50, 1651–1659 (2021).
pubmed: 33899104 pmcid: 8580269 doi: 10.1093/ije/dyab084
Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).
pubmed: 29846171 pmcid: 5976434 doi: 10.7554/eLife.34408
Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R package for causal mediation analysis. J. Stat. Softw. 56, 11 (2014).

Auteurs

Lianmin Chen (L)

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
Department of Cardiology, Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.

Daria V Zhernakova (DV)

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia.

Alexander Kurilshikov (A)

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Sergio Andreu-Sánchez (S)

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Daoming Wang (D)

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Hannah E Augustijn (HE)

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
Bioinformatics Group, Wageningen University, Wageningen, the Netherlands.

Arnau Vich Vila (A)

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Rinse K Weersma (RK)

Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Marnix H Medema (MH)

Bioinformatics Group, Wageningen University, Wageningen, the Netherlands.

Mihai G Netea (MG)

Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.

Folkert Kuipers (F)

Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Cisca Wijmenga (C)

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Alexandra Zhernakova (A)

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Jingyuan Fu (J)

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. j.fu@umcg.nl.
Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. j.fu@umcg.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH