Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome.
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
11 2022
11 2022
Historique:
received:
05
07
2021
accepted:
15
08
2022
pubmed:
11
10
2022
medline:
22
11
2022
entrez:
10
10
2022
Statut:
ppublish
Résumé
The levels of the thousands of metabolites in the human plasma metabolome are strongly influenced by an individual's genetics and the composition of their diet and gut microbiome. Here, by assessing 1,183 plasma metabolites in 1,368 extensively phenotyped individuals from the Lifelines DEEP and Genome of the Netherlands cohorts, we quantified the proportion of inter-individual variation in the plasma metabolome explained by different factors, characterizing 610, 85 and 38 metabolites as dominantly associated with diet, the gut microbiome and genetics, respectively. Moreover, a diet quality score derived from metabolite levels was significantly associated with diet quality, as assessed by a detailed food frequency questionnaire. Through Mendelian randomization and mediation analyses, we revealed putative causal relationships between diet, the gut microbiome and metabolites. For example, Mendelian randomization analyses support a potential causal effect of Eubacterium rectale in decreasing plasma levels of hydrogen sulfite-a toxin that affects cardiovascular function. Lastly, based on analysis of the plasma metabolome of 311 individuals at two time points separated by 4 years, we observed a positive correlation between the stability of metabolite levels and the amount of variance in the levels of that metabolite that could be explained in our analysis. Altogether, characterization of factors that explain inter-individual variation in the plasma metabolome can help design approaches for modulating diet or the gut microbiome to shape a healthy metabolome.
Identifiants
pubmed: 36216932
doi: 10.1038/s41591-022-02014-8
pii: 10.1038/s41591-022-02014-8
pmc: PMC9671809
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2333-2343Informations de copyright
© 2022. The Author(s).
Références
Suhre, K. et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 477, 54–60 (2011).
pubmed: 21886157
doi: 10.1038/nature10354
Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543–550 (2014).
pubmed: 24816252
pmcid: 4064254
doi: 10.1038/ng.2982
Bar, N. et al. A reference map of potential determinants for the human serum metabolome. Nature 588, 135–140 (2020).
pubmed: 33177712
doi: 10.1038/s41586-020-2896-2
Asnicar, F. et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 27, 321–332 (2021).
pubmed: 33432175
pmcid: 8353542
doi: 10.1038/s41591-020-01183-8
Tigchelaar, E. F. et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 5, e006772 (2015).
pubmed: 26319774
pmcid: 4554905
doi: 10.1136/bmjopen-2014-006772
Boomsma, D. I. et al. The Genome of the Netherlands: design, and project goals. Eur. J. Hum. Genet. 22, 221–227 (2014).
pubmed: 23714750
doi: 10.1038/ejhg.2013.118
Chen, L. et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184, 2302–2315 (2021).
pubmed: 33838112
doi: 10.1016/j.cell.2021.03.024
Vinke, P. C. et al. Development of the food-based Lifelines Diet Score (LLDS) and its application in 129,369 Lifelines participants. Eur. J. Clin. Nutr. 72, 1111–1119 (2018).
pubmed: 29895847
doi: 10.1038/s41430-018-0205-z
Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019).
pubmed: 30778224
pmcid: 6441384
doi: 10.1038/s41588-019-0350-x
Fuhrer, T., Zampieri, M., Sevin, D. C., Sauer, U. & Zamboni, N. Genomewide landscape of gene–metabolome associations in Escherichia coli. Mol. Syst. Biol. 13, 907 (2017).
pubmed: 28093455
pmcid: 5293155
doi: 10.15252/msb.20167150
Fuhrer, T., Heer, D., Begemann, B. & Zamboni, N. High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection–time-of-flight mass spectrometry. Anal. Chem. 83, 7074–7080 (2011).
pubmed: 21830798
doi: 10.1021/ac201267k
Wang, D. M. et al. Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host Microbe 29, 1802–1814 (2021).
pubmed: 34847370
doi: 10.1016/j.chom.2021.11.003
Kurilshikov, A. et al. Gut microbial associations to plasma metabolites linked to cardiovascular phenotypes and risk: a cross-sectional study. Circ. Res. 124, 1808–1820 (2019).
pubmed: 30971183
doi: 10.1161/CIRCRESAHA.118.314642
Zou, H. & Hastie, T. Regularization and variable selection via the Elastic Net. J. R. Stat. Soc. B 67, 301–320 (2005).
doi: 10.1111/j.1467-9868.2005.00503.x
Wishart, D. S. et al. HMDB 4.0: the Human Metabolome Database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).
pubmed: 29140435
doi: 10.1093/nar/gkx1089
Zhao, Y. et al. Analysis of multiple metabolites of tocopherols and tocotrienols in mice and humans. J. Agric. Food Chem. 58, 4844–4852 (2010).
pubmed: 20222730
pmcid: 2858244
doi: 10.1021/jf904464u
Jiang, Q., Christen, S., Shigenaga, M. K. & Ames, B. N. γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr. 74, 714–722 (2001).
pubmed: 11722951
doi: 10.1093/ajcn/74.6.714
Pallister, T. et al. Hippurate as a metabolomic marker of gut microbiome diversity: modulation by diet and relationship to metabolic syndrome. Sci. Rep. 7, 13670 (2017).
pubmed: 29057986
pmcid: 5651863
doi: 10.1038/s41598-017-13722-4
Razavi, A. C. et al. Novel findings from a metabolomics study of left ventricular diastolic function: the Bogalusa Heart Study. J. Am. Heart Assoc. 9, e015118 (2020).
pubmed: 31992159
pmcid: 7033875
doi: 10.1161/JAHA.119.015118
Trichopoulou, A. & Vasilopoulou, E. Mediterranean diet and longevity. Br. J. Nutr. 84, S205–S209 (2000).
pubmed: 11242471
doi: 10.1079/096582197388554
Krebs-Smith, S. M. et al. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 118, 1591–1602 (2018).
pubmed: 30146071
pmcid: 6719291
doi: 10.1016/j.jand.2018.05.021
Moller, G. et al. A protein diet score, including plant and animal protein, investigating the association with HbA1c and eGFR—the PREVIEW project. Nutrients 9, 763 (2017).
pmcid: 5537877
doi: 10.3390/nu9070763
Khalili, H. et al. Adherence to a Mediterranean diet is associated with a lower risk of later-onset Crohn’s disease: results from two large prospective cohort studies. Gut 69, 1637–1644 (2020).
pubmed: 31900290
doi: 10.1136/gutjnl-2019-319505
Wendel-Vos, G. C., Schuit, A. J., Saris, W. H. & Kromhout, D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J. Clin. Epidemiol. 56, 1163–1169 (2003).
pubmed: 14680666
doi: 10.1016/S0895-4356(03)00220-8
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056
pmcid: 5705698
doi: 10.1038/s41467-017-01261-5
Schlosser, P. et al. Genetic studies of urinary metabolites illuminate mechanisms of detoxification and excretion in humans. Nat. Genet. 52, 167–176 (2020).
pubmed: 31959995
pmcid: 7484970
doi: 10.1038/s41588-019-0567-8
Selinski, S., Blaszkewicz, M., Ickstadt, K., Hengstler, J. G. & Golka, K. Refinement of the prediction of N-acetyltransferase 2 (NAT2) phenotypes with respect to enzyme activity and urinary bladder cancer risk. Arch. Toxicol. 87, 2129–2139 (2013).
pubmed: 24221535
doi: 10.1007/s00204-013-1157-7
Lee, H. H. & Ho, R. H. Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLCO1B1). Br. J. Clin. Pharm. 83, 1176–1184 (2017).
doi: 10.1111/bcp.13207
Group, S. C. et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).
doi: 10.1056/NEJMoa0801936
Yogalingam, G., Muller, V., Hopwood, J. J. & Anson, D. S. Regulation of N-acetylgalactosamine 4-sulfatase expression in retrovirus-transduced feline mucopolysaccharidosis type VI muscle cells. DNA Cell Biol. 18, 187–195 (1999).
pubmed: 10098600
doi: 10.1089/104454999315402
Ohtomo, Y. et al. High-dose mizoribine therapy for childhood-onset frequently relapsing steroid-dependent nephrotic syndrome with cyclosporin nephrotoxicity. Pediatr. Nephrol. 20, 1744–1749 (2005).
pubmed: 16133041
doi: 10.1007/s00467-005-2025-3
Wang, Z. & Zhao, Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 9, 416–431 (2018).
pubmed: 29725935
pmcid: 5960473
doi: 10.1007/s13238-018-0549-0
Wang, Y. et al. Decoding microbial genomes to understand their functional roles in human complex diseases. iMeta 1, e14 (2022).
doi: 10.1002/imt2.14
Seyed Hameed, A. S., Rawat, P. S., Meng, X. & Liu, W. Biotransformation of dietary phytoestrogens by gut microbes: a review on bidirectional interaction between phytoestrogen metabolism and gut microbiota. Biotechnol. Adv. 43, 107576 (2020).
pubmed: 32531317
doi: 10.1016/j.biotechadv.2020.107576
Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).
pubmed: 28114746
pmcid: 5434863
doi: 10.1002/sim.7221
Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).
pubmed: 26050253
pmcid: 4469799
doi: 10.1093/ije/dyv080
Levin, J., Bötzel, K., Giese, A., Vogeser, M. & Lorenzl, S. Elevated levels of methylmalonate and homocysteine in Parkinson’s disease, progressive supranuclear palsy and amyotrophic lateral sclerosis. Dement. Geriatr. Cogn. Disord. 29, 553–559 (2010).
pubmed: 20606437
doi: 10.1159/000314841
Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).
pubmed: 35418674
doi: 10.1038/s41586-022-04567-7
Chen, L. et al. Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nat. Commun. 11, 4018 (2020).
pubmed: 32782301
pmcid: 7419557
doi: 10.1038/s41467-020-17840-y
Karcher, N. et al. Analysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptations. Genome Biol. 21, 138 (2020).
pubmed: 32513234
pmcid: 7278147
doi: 10.1186/s13059-020-02042-y
Chen, L. et al. Genetic and microbial associations to plasma and fecal bile acids in obesity relate to plasma lipids and liver fat content. Cell Rep. 33, 108212 (2020).
pubmed: 33027657
doi: 10.1016/j.celrep.2020.108212
Ríos-Covián, D. et al. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 7, 185 (2016).
pubmed: 26925050
pmcid: 4756104
doi: 10.3389/fmicb.2016.00185
Vich Vila, A. et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 10, eaap8914 (2018).
pubmed: 30567928
doi: 10.1126/scitranslmed.aap8914
Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).
pubmed: 25432777
pmcid: 4299606
doi: 10.15252/msb.20145645
Beltowski, J. Hydrogen sulfide in pharmacology and medicine—an update. Pharm. Rep. 67, 647–658 (2015).
doi: 10.1016/j.pharep.2015.01.005
Andreu, V. P. et al. A systematic analysis of metabolic pathways in the human gut microbiota. Preprint at bioRxiv https://doi.org/10.1101/2021.02.25.432841 (2021).
Zeevi, D. et al. Structural variation in the gut microbiome associates with host health. Nature 568, 43–48 (2019).
pubmed: 30918406
doi: 10.1038/s41586-019-1065-y
Ogawa, M., Suzuki, Y., Endo, Y., Kawamoto, T. & Kayama, F. Influence of coffee intake on urinary hippuric acid concentration. Ind. Health 49, 195–202 (2011).
pubmed: 21173531
doi: 10.2486/indhealth.MS1164
Duranton, F. et al. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 23, 1258–1270 (2012).
pubmed: 22626821
pmcid: 3380651
doi: 10.1681/ASN.2011121175
Biegel, E. & Muller, V. Bacterial Na
pubmed: 20921383
pmcid: 2964206
doi: 10.1073/pnas.1010318107
Holland, I. B. & Blight, M. A. ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J. Mol. Biol. 293, 381–399 (1999).
pubmed: 10529352
doi: 10.1006/jmbi.1999.2993
Zheng, D. et al. Urolithin B, a gut microbiota metabolite, protects against myocardial ischemia/reperfusion injury via p62/Keap1/Nrf2 signaling pathway. Pharm. Res. 153, 104655 (2020).
doi: 10.1016/j.phrs.2020.104655
Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10, 4505 (2019).
pubmed: 31582752
pmcid: 6776654
doi: 10.1038/s41467-019-12476-z
Bradley, P. H. & Pollard, K. S. Building a chemical blueprint for human blood. Nature 588, 36–37 (2020).
pubmed: 33177685
doi: 10.1038/d41586-020-03122-6
Wijmenga, C. & Zhernakova, A. The importance of cohort studies in the post-GWAS era. Nat. Genet. 50, 322–328 (2018).
pubmed: 29511284
doi: 10.1038/s41588-018-0066-3
Genome of the Netherlands, C. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat. Genet. 46, 818–825 (2014).
doi: 10.1038/ng.3021
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
pubmed: 19261174
pmcid: 2690996
doi: 10.1186/gb-2009-10-3-r25
Langmead, B., Wilks, C., Antonescu, V. & Charles, R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 35, 421–432 (2019).
pubmed: 30020410
doi: 10.1093/bioinformatics/bty648
Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).
pubmed: 26418763
doi: 10.1038/nmeth.3589
Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).
pubmed: 30377376
pmcid: 6235447
doi: 10.1038/s41592-018-0176-y
Bateman, A. et al. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).
doi: 10.1093/nar/gku989
Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 44, D471–D480 (2016).
pubmed: 26527732
doi: 10.1093/nar/gkv1164
Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).
pubmed: 29059334
doi: 10.1093/nar/gkx935
Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. 44, 139–177 (1982).
Zhernakova, D. V. et al. Individual variations in cardiovascular-disease-related protein levels are driven by genetics and gut microbiome. Nat. Genet. 50, 1524–1532 (2018).
pubmed: 30250126
pmcid: 6241851
doi: 10.1038/s41588-018-0224-7
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
pubmed: 27571263
pmcid: 5157836
doi: 10.1038/ng.3656
McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
pubmed: 27548312
pmcid: 5388176
doi: 10.1038/ng.3643
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol. 57, 289–300 (1995).
Fehrmann, R. S. N. et al. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 7, e1002197 (2011).
pubmed: 21829388
pmcid: 3150446
doi: 10.1371/journal.pgen.1002197
Imhann, F. et al. Proton pump inhibitors affect the gut microbiome. Gut 65, 740–748 (2016).
pubmed: 26657899
doi: 10.1136/gutjnl-2015-310376
Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).
pubmed: 27126040
pmcid: 5240844
doi: 10.1126/science.aad3369
Minelli, C. et al. The use of two-sample methods for Mendelian randomization analyses on single large datasets. Int J. Epidemiol. 50, 1651–1659 (2021).
pubmed: 33899104
pmcid: 8580269
doi: 10.1093/ije/dyab084
Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).
pubmed: 29846171
pmcid: 5976434
doi: 10.7554/eLife.34408
Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R package for causal mediation analysis. J. Stat. Softw. 56, 11 (2014).