Immune-Checkpoint-Inhibitor Therapy-Principles and Relevance of Biomarkers for Pathologists and Oncologists.
Journal
Advances in anatomic pathology
ISSN: 1533-4031
Titre abrégé: Adv Anat Pathol
Pays: United States
ID NLM: 9435676
Informations de publication
Date de publication:
01 May 2023
01 May 2023
Historique:
medline:
12
4
2023
pubmed:
13
10
2022
entrez:
12
10
2022
Statut:
ppublish
Résumé
Immune-checkpoint-inhibitor (ICI) therapy has been one of the major advances in the treatment of a variety of advanced or metastatic tumors in recent years. Therefore, ICI-therapy is already approved in first-line therapy for multiple tumors, either as monotherapy or as combination therapy. However, there are relevant differences in approval among different tumor entities, especially with respect to PD-L1 testing. Different response to ICI-therapy has been observed in the pivotal trials, so PD-L1 diagnostic testing is used for patient selection. In addition to PD-L1 testing of tumor tissue, liquid biopsy provides a noninvasive way to monitor disease in cancer patients and identify those who would benefit most from ICI-therapy. This overview focuses on the use of ICI-therapy and how it relates to common and potential future biomarkers for patient-directed treatment planning.
Identifiants
pubmed: 36221221
doi: 10.1097/PAP.0000000000000373
pii: 00125480-202305000-00003
doi:
Substances chimiques
B7-H1 Antigen
0
Antineoplastic Agents, Immunological
0
Biomarkers, Tumor
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
160-166Informations de copyright
Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
Déclaration de conflit d'intérêts
C.K. reports consulting fees Apogepha, research funding Advanced Accelerator Applications (Novartis). B.A.H. reports personal fees from ABX, Bayer, LightPoint Medical Inc., Janssen R&D, Bristol-Myers-Squibb and Astellas; research funding from Profound Medical, German Cancer Aid, German Research Foundation, Janssen R&D, Bristol-Myers-Squibb, MSD, Pfizer and Astellas; and travel fees from AstraZeneca, Janssen R&D and Astellas. V.G. reports fees from Astellas, AstraZeneca, BMS, EISAI, Ipsen, Janssen-Cilag, Merck Serono, MSD, Novartis, Pfizer, Roche, and research grants from BMS, Ipsen, MSD and Pfizer. The remaining authors have no funding or conflicts of interest to disclose.
Références
Cohen M, Giladi A, Barboy O, et al. The interaction of CD4(+) helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nat Cancer. 2022;3:303–317.
Gide TN, Quek C, Menzies AM, et al. Distinct immune cell populations define response to anti-PD-1 monotherapy and Anti-PD-1/Anti-CTLA-4 combined therapy. Cancer Cell. 2019;35:238–55.e6.
Wang X, Wu S, Chen Y, et al. Fatal adverse events associated with programmed cell death ligand 1 inhibitors: a systematic review and meta-analysis. Front Pharmacol. 2020;11:5.
Blank CU, Haanen JB, Ribas A, et al. Cancer Immunology. the “cancer immunogram”. Science. 2016;352:658–660.
Zander H, Müller-Egert S, Zwiewka M, et al. [Checkpoint inhibitors for cancer therapy]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2020;63:1322–1330.
Yamaguchi H, Hsu JM, Yang WH, et al. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat Rev Clin Oncol. 2022;19:287–305.
Long GV, Dummer R, Hamid O, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 2019;20:1083–1097.
European Medicines Agency: Yervoy - EMEA/H/C/002213 - IAIN/0096/G February 17, 2022. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/yervoy . Accessed May 2022.
European Medicines Agency: Opdivo - EMEA/H/C/003985 - IAIN/0116/G. February 09, 2022. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/opdivo . Accessed May 2022.
European Medicines Agency: Keytruda - EMEA/H/C/003820 - II/0114. February 17, 2022. Available at: https://www.ema.europa.eu/en/documents/product-information/keytruda-epar-product-information_en.pdf . Accessed May 2022.
European Medicines Agency: Libtayo - EMEA/H/C/004844 - N/0030. February 04, 2022. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/libtayo .
European Medicines Agency: Tecentriq - EMEA/H/C/004143 - PSUSA/00010644/202105. February 23, 2022. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/tecentriq . Accessed May 2022.
European Medicines Agency: Bavencio - EMEA/H/C/004338 - PSUSA/00010635/202103. January 06, 2022. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/bavencio . Accessed May 2022.
European Medicines Agency: Imfinzi - EMEA/H/C/004771 - PSUSA/00010723/202104. February 28, 2022. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/imfinzi . Accessed May 2022.
Ledford H. Melanoma drug wins US approval. Nature. 2011;471:561.
Wojtukiewicz MZ, Rek MM, Karpowicz K, et al. Inhibitors of immune checkpoints-PD-1, PD-L1, CTLA-4-new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021;40:949–982.
Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol. 2021;14:45.
Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–461.
Wang DY, Salem JE, Cohen JV, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4:1721–1728.
Wu P, Wu D, Li L, et al. PD-L1 and survival in solid tumors: a meta-analysis. PLoS One. 2015;10:e0131403.
Li Y, Huang Q, Zhou Y, et al. The clinicopathologic and prognostic significance of programmed cell death ligand 1 (pd-l1) expression in patients with prostate cancer: a systematic review and meta-analysis. Front Pharmacol. 2018;9:1494.
Huss R, Schmid C, Manesse M, et al. Immunological tumor heterogeneity and diagnostic profiling for advanced and immune therapies. Adv Cell Gene Ther. 2021;4:e113.
Vitale I, Shema E, Loi S, et al. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nature Medicine. 2021;27:212–224.
Schildhaus HU. Predictive value of PD-L1 diagnostics. Pathologe. 2018;39:498–519.
Cohen EEW, Soulières D, Le Tourneau C, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet (London, England). 2019;393:156–167.
Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394:1915–1928.
Lu S, Stein JE, Rimm DL, et al. Comparison of biomarker modalities for predicting response to pd-1/pd-l1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 2019;5:1195–1204.
Motzer R, Alekseev B, Rha SY, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med. 2021;384:1289–1300.
Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380:1116–1127.
Choueiri TK, Powles T, Burotto M, et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2021;384:829–841.
Tsao MS, Kerr KM, Kockx M, et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol. 2018;13:1302–1311.
Angelova M, Mlecnik B, Vasaturo A, et al. Evolution of metastases in space and time under immune selection. Cell. 2018;175:751–65.e16.
Anagnostou V, Smith KN, Forde PM, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7:264–276.
Brozos-Vázquez EM, Díaz-Peña R, García-González J, et al. Immunotherapy in nonsmall-cell lung cancer: current status and future prospects for liquid biopsy. Cancer Immunol Immunother. 2021;70:1177–1188.
Gandara DR, Paul SM, Kowanetz M, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018;24:1441–1448.
Corcoran RB, Chabner BA. Application of cell-free dna analysis to cancer treatment. N Engl J Med. 2018;379:1754–1765.
Powles T, Assaf ZJ, Davarpanah N, et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature. 2021;595:432–437.
Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–421.
Strickler JH, Hanks BA, Khasraw M. Tumor mutational burden as a predictor of immunotherapy response: is more always better? Clin Cancer Res. 2021;27:1236–1241.
Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21:1353–1365.
Koeppel F, Blanchard S, Jovelet C, et al. Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients. PLoS One. 2017;12:e0188174.
Fenizia F, Pasquale R, Roma C, et al. Measuring tumor mutation burden in non-small cell lung cancer: tissue versus liquid biopsy. Transl Lung Cancer Res. 2018;7:668–677.
De Logu F, Galli F, Nassini R, et al. Digital immunophenotyping predicts disease free and overall survival in early stage melanoma patients. Cells. 2021;10:422.
Helmink BA, Reddy SM, Gao J, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577:549–555.
Cabrita R, Lauss M, Sanna A, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020;577:561–565.
Spassova I, Ugurel S, Kubat L, et al. Clinical and molecular characteristics associated with response to therapeutic PD-1/PD-L1 inhibition in advanced Merkel cell carcinoma. J Immunother Cancer. 2022;10:e003198.
Ma X, Guo Z, Wei X, et al. Spatial distribution and predictive significance of dendritic cells and macrophages in esophageal cancer treated with combined chemoradiotherapy and PD-1 blockade. Front Immunol. 2021;12:786429.
Johnson DB, Nebhan CA, Moslehi JJ, et al. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat Rev Clin Oncol. 2022;19:254–267.
Darvin P, Toor SM, Sasidharan Nair V, et al. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50:1–11.
Valero C, Lee M, Hoen D, et al. Response rates to anti-PD-1 immunotherapy in microsatellite-stable solid tumors with 10 or more mutations per megabase. JAMA Oncol. 2021;7:739–743.
Büttner R, Longshore JW, López-Ríos F, et al. Implementing TMB measurement in clinical practice: considerations on assay requirements. ESMO Open. 2019;4:e000442.
McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–1469.
Türeci Ö, Vormehr M, Diken M, et al. Targeting the heterogeneity of cancer with individualized neoepitope vaccines. Clin Cancer Res. 2016;22:1885–1896.