Measurement of retinal nerve fiber layer thickness with a deep learning algorithm in ischemic optic neuropathy and optic neuritis.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
12 10 2022
12 10 2022
Historique:
received:
21
07
2022
accepted:
10
10
2022
entrez:
12
10
2022
pubmed:
13
10
2022
medline:
15
10
2022
Statut:
epublish
Résumé
This work aims at determining the ability of a deep learning (DL) algorithm to measure retinal nerve fiber layer (RNFL) thickness from optical coherence tomography (OCT) scans in anterior ischemic optic neuropathy (NAION) and demyelinating optic neuritis (ON). The training/validation dataset included 750 RNFL OCT B-scans. Performance of our algorithm was evaluated on 194 OCT B-scans from 70 healthy eyes, 82 scans from 28 NAION eyes, and 84 scans of 29 ON eyes. Results were compared to manual segmentation as a ground-truth and to RNFL calculations from the built-in instrument software. The Dice coefficient for the test images was 0.87. The mean average RNFL thickness using our U-Net was not different from the manually segmented best estimate and OCT machine data in control and ON eyes. In NAION eyes, while the mean average RNFL thickness using our U-Net algorithm was not different from the manual segmented value, the OCT machine data were different from the manual segmented values. In NAION eyes, the MAE of the average RNFL thickness was 1.18 ± 0.69 μm and 6.65 ± 5.37 μm in the U-Net algorithm segmentation and the conventional OCT machine data, respectively (P = 0.0001).
Identifiants
pubmed: 36224300
doi: 10.1038/s41598-022-22135-x
pii: 10.1038/s41598-022-22135-x
pmc: PMC9556618
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
17109Informations de copyright
© 2022. The Author(s).
Références
Am J Ophthalmol. 2017 Feb;174:1-8
pubmed: 27818206
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744
pubmed: 28663902
Invest Ophthalmol Vis Sci. 2016 Sep 1;57(11):4632-40
pubmed: 27603724
Transl Vis Sci Technol. 2020 Sep 10;9(10):10
pubmed: 32974082
JAMA Ophthalmol. 2014 Apr 1;132(4):396-402
pubmed: 24525613
Neurol Sci. 2020 Sep;41(9):2477-2483
pubmed: 32212009
J Neuroophthalmol. 2016 Jun;36(2):141-6
pubmed: 26835663
J Neuroophthalmol. 2019 Sep;39(3):339-344
pubmed: 30893268
J Glaucoma. 2017 Nov;26(11):995-1000
pubmed: 28858152
Am J Ophthalmol. 2015 Mar;159(3):565-76.e2
pubmed: 25498118
Biomed Opt Express. 2018 Jun 25;9(7):3244-3265
pubmed: 29984096
Biomed Opt Express. 2017 Jul 13;8(8):3627-3642
pubmed: 28856040
Biomed Opt Express. 2021 May 07;12(6):3228-3240
pubmed: 34221656
J Biomed Opt. 2007 Jul-Aug;12(4):041209
pubmed: 17867798
Biomed Opt Express. 2018 Oct 26;9(11):5759-5777
pubmed: 30460160
Biomed Opt Express. 2020 Oct 15;11(11):6356-6378
pubmed: 33282495
J Fr Ophtalmol. 2020 Jan;43(1):35-42
pubmed: 31706462
Sci Rep. 2020 Jan 15;10(1):402
pubmed: 31941958
Opt Express. 2009 Mar 2;17(5):4019-36
pubmed: 19259243
Eye (Lond). 2020 Jan;34(1):1-11
pubmed: 31541215
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1832-1835
pubmed: 33018356
J Neuroophthalmol. 2016 Dec;36(4):417-438
pubmed: 27636747
J Glaucoma. 2019 May;28(5):368-374
pubmed: 30855415
Sci Rep. 2019 Jul 8;9(1):9836
pubmed: 31285505