Long noncoding RNA THRIL promotes foam cell formation and inflammation in macrophages.


Journal

Cell biology international
ISSN: 1095-8355
Titre abrégé: Cell Biol Int
Pays: England
ID NLM: 9307129

Informations de publication

Date de publication:
Jan 2023
Historique:
received: 31 07 2022
accepted: 13 09 2022
pubmed: 15 10 2022
medline: 22 12 2022
entrez: 14 10 2022
Statut: ppublish

Résumé

Tumor necrosis factor-α (TNF-α) and heterogenous nuclear ribonucleoprotein L (hnRNPL)-related immunoregulatory lincRNA (THRIL) is a long noncoding RNA (lncRNA) involved in various inflammatory diseases. However, its role in atherosclerosis is not known. In this study, we aimed to investigate the function of THRIL in mediating macrophage inflammation and foam cell formation. The expression of THRIL was quantified in THP-1 macrophages after treatment with oxidized low-density lipoprotein (oxLDL). The effect of THRIL overexpression and knockdown on oxLDL-induced inflammatory responses and lipid accumulation was determined. THRIL-associated protein partners were identified by RNA pull-down and RNA immunoprecipitation assays. We show that THRIL is upregulated in macrophages after oxLDL treatment. Knockdown of THRIL blocks oxLDL-induced expression of interleukin-1β (IL-1β), IL-6, and TNF-α and lipid accumulation. Conversely, ectopic expression of THRIL enhances inflammatory gene expression and lipid deposition in oxLDL-treated macrophages. Moreover, THRIL depletion increases cholesterol efflux from macrophages and the expression of ATP-binding cassette transporter (ABC) A1 and ABCG1. FOXO1 is identified as a protein partner of THRIL and promotes macrophage inflammation and lipid accumulation. Furthermore, overexpression of FOXO1 restores lipid accumulation and inflammatory cytokine production in THRIL-depleted macrophages. In conclusion, our data suggest a model where THRIL interacts with FOXO1 to promote macrophage inflammation and foam cell formation. THRIL may represent a therapeutic target for atherosclerosis.

Identifiants

pubmed: 36229925
doi: 10.1002/cbin.11934
doi:

Substances chimiques

ATP Binding Cassette Transporter 1 0
Cholesterol 97C5T2UQ7J
Lipoproteins, LDL 0
RNA, Long Noncoding 0
Tumor Necrosis Factor-alpha 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

156-166

Subventions

Organisme : Basic Research Program of Shanxi Province (Free Exploration) of China
ID : 20210302124416
Organisme : Science and Technology Grant for Selected Returned Chinese Scholars of Shanxi Province of China
ID : 20220043

Informations de copyright

© 2022 International Federation for Cell Biology.

Références

Badimon, L., Luquero, A., Crespo, J., Peña, E., & Borrell-Pages, M. (2021). PCSK9 and LRP5 in macrophage lipid internalization and inflammation. Cardiovascular Research, 117, 2054-2068.
Chen, L., Gao, B., Zhang, Y., Lu, H., Li, X., Pan, L., Yin, L., & Zhi, X. (2019). PAR2 promotes M1 macrophage polarization and inflammation via FOXO1 pathway. Journal of Cellular Biochemistry, 120, 9799-9809.
Cheng, H., Cheng, Q., Bao, X., Luo, Y., Zhou, Y., Li, Y., Hua, Q., Liu, W., Tang, S., Feng, D., & Luo, Z. (2020). Over-activation of NMDA receptors promotes ABCA1 degradation and foam cell formation. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1865, 158778.
Conway, J. P., & Kinter, M. (2005). Proteomic and transcriptomic analyses of macrophages with an increased resistance to oxidized low density lipoprotein (oxLDL)-induced cytotoxicity generated by chronic exposure to oxLDL. Molecular & Cellular Proteomics, 4, 1522-1540.
Crucet, M., Wüst, S. J. A., Spielmann, P., Lüscher, T. F., Wenger, R. H., & Matter, C. M. (2013). Hypoxia enhances lipid uptake in macrophages: Role of the scavenger receptors Lox1, SRA, and CD36. Atherosclerosis, 229, 110-117.
Fukunaga, K., Imachi, H., Lyu, J., Dong, T., Sato, S., Ibata, T., Kobayashi, T., Yoshimoto, T., Yonezaki, K., Matsunaga, T., & Murao, K. (2018). IGF1 suppresses cholesterol accumulation in the liver of growth hormone-deficient mice via the activation of ABCA1. American Journal of Physiology-Endocrinology and Metabolism, 315, E1232-E1241.
Gao, C., Huang, Q., Liu, C., Kwong, C. H. T., Yue, L., Wan, J. B., Lee, S. M. Y., & Wang, R. (2020). Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nature Communications, 11, 2622.
Hirose, K., Iwabuchi, K., Shimada, K., Kiyanagi, T., Iwahara, C., Nakayama, H., & Daida, H. (2011). Different responses to oxidized low-density lipoproteins in human polarized macrophages. Lipids in Health and Disease, 10, 1.
Huangfu, N., Xu, Z., Zheng, W., Wang, Y., Cheng, J., & Chen, X. (2018). LncRNA MALAT1 regulates oxLDL-induced CD36 expression via activating β-catenin. Biochemical and Biophysical Research Communications, 495, 2111-2117.
Ito, Y., Daitoku, H., & Fukamizu, A. (2009). Foxo1 increases pro-inflammatory gene expression by inducing C/EBPβ in TNF-α-treated adipocytes. Biochemical and Biophysical Research Communications, 378, 290-295.
Lei, S., Chen, J., Song, C., Li, J., Zuo, A., Xu, D., Li, T., & Guo, Y. (2021). CTRP9 alleviates foam cells apoptosis by enhancing cholesterol efflux. Molecular and Cellular Endocrinology, 522, 111138.
Li, Z., Chao, T. C., Chang, K. Y., Lin, N., Patil, V. S., Shimizu, C., Head, S. R., Burns, J. C., & Rana, T. M. (2014). The long noncoding RNATHRIL regulates TNFα expression through its interaction with hnRNPL. Proceedings of the National Academy of Sciences, 111, 1002-1007.
Liang, Y., Li, H., Gong, X., & Ding, C. (2020). Long non-coding RNA THRIL mediates cell growth and inflammatory response of fibroblast-like synoviocytes by activating PI3K/AKT signals in rheumatoid arthritis. Inflammation, 43, 1044-1053.
Liu, G., Wang, Y., Zhang, M., & Zhang, Q. (2019). Long non-coding RNA THRIL promotes LPS-induced inflammatory injury by down-regulating microRNA-125b in ATDC5 cells. International Immunopharmacology, 66, 354-361.
Liu, J., Liu, Z. X., Wu, Q. N., Lu, Y. X., Wong, C. W., Miao, L., Wang, Y., Wang, Z., Jin, Y., He, M. M., Ren, C., Wang, D. S., Chen, D. L., Pu, H. Y., Feng, L., Li, B., Xie, D., Zeng, M. S., Huang, P., … Ju, H. Q. (2020). Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nature Communications, 11, 1507.
Mai, J., Liu, W., Fang, Y., Zhang, S., Qiu, Q., Yang, Y., Wang, X., Huang, T., Zhang, H., Xie, Y., Lin, M., Chen, Y., & Wang, J. (2018). The atheroprotective role of lipoxin A(4) prevents oxLDL-induced apoptotic signaling in macrophages via JNK pathway. Atherosclerosis, 278, 259-268.
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3, 1101-1108.
Simion, V., Zhou, H., Haemmig, S., Pierce, J. B., Mendes, S., Tesmenitsky, Y., Pérez-Cremades, D., Lee, J. F., Chen, A. F., Ronda, N., Papotti, B., Marto, J. A., & Feinberg, M. W. (2020). A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nature Communications, 11, 6135.
Song, J., Ren, P., Zhang, L., Wang, X. L., Chen, L., & Shen, Y. H. (2010). Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4. Biochemical and Biophysical Research Communications, 393, 89-94.
Statello, L., Guo, C. J., Chen, L. L., & Huarte, M. (2021). Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews Molecular Cell Biology, 22, 96-118.
Su, D., Coudriet, G. M., Hyun Kim, D., Lu, Y., Perdomo, G., Qu, S., Slusher, S., Tse, H. M., Piganelli, J., Giannoukakis, N., Zhang, J., & Henry Dong, H. (2009). FoxO1 links insulin resistance to proinflammatory cytokine IL-1β production in macrophages. Diabetes, 58, 2624-2633.
Tan, L., Lu, J., Liu, L., & Li, L. (2021). Fatty acid binding protein 3 deficiency limits atherosclerosis development via macrophage foam cell formation inhibition. Experimental Cell Research, 407, 112768.
Tang, X., Yin, R., Shi, H., Wang, X., Shen, D., Wang, X., & Pan, C. (2020). LncRNA ZFAS1 confers inflammatory responses and reduces cholesterol efflux in atherosclerosis through regulating miR-654-3p-ADAM10/RAB22A axis. International Journal of Cardiology, 315, 72-80.
Tsuchiya, K., Tanaka, J., Shuiqing, Y., Welch, C. L., DePinho, R. A., Tabas, I., Tall, A. R., Goldberg, I. J., & Accili, D. (2012). FoxOs integrate pleiotropic actions of insulin in vascular endothelium to protect mice from atherosclerosis. Cell Metabolism, 15, 372-381.
Wang, Y., Lu, J. H., Wu, Q. N., Jin, Y., Wang, D. S., Chen, Y. X., Liu, J., Luo, X. J., Meng, Q., Pu, H. Y., Wang, Y. N., Hu, P. S., Liu, Z. X., Zeng, Z. L., Zhao, Q., Deng, R., Zhu, X. F., Ju, H. Q., & Xu, R. H. (2019). LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Molecular Cancer, 18, 174.
Xia, J., Jiang, N., Li, Y., Wei, Y., & Zhang, X. (2019). The long noncoding RNA THRIL knockdown protects hypoxia-induced injuries of H9C2 cells through regulating miR-99a. Cardiology Journal, 26, 564-574.
Xu, L., Wang, Y. R., Li, P. C., & Feng, B. (2016). Advanced glycation end products increase lipids accumulation in macrophages through upregulation of receptor of advanced glycation end products: Increasing uptake, esterification and decreasing efflux of cholesterol. Lipids in Health and Disease, 15, 161.
Ye, Z., Yang, S., Xia, Y., Hu, R., Chen, S., Li, B., Chen, S., Luo, X., Mao, L., Li, Y., Jin, H., Qin, C., & Hu, B. (2019). LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death & Disease, 10, 138.
Zhang, Y., Lu, X., Yang, M., Shangguan, J., & Yin, Y. (2021). GAS5 knockdown suppresses inflammation and oxidative stress induced by oxidized low-density lipoprotein in macrophages by sponging miR-135a. Molecular and Cellular Biochemistry, 476, 949-957.
Zhang, Z. Z., Chen, J. J., Deng, W. Y., Yu, X. H., & Tan, W. H. (2021). CTRP1 decreases ABCA1 expression and promotes lipid accumulation through the miR-424-5p/FoxO1 pathway in THP-1 macrophage-derived foam cells. Cell Biology International, 45, 2226-2237. https://doi.org/10.1002/cbin.11666
Zhang, Z. Z., Wang, G., Yin, S. H., & Yu, X. H. (2021). Midkine: A multifaceted driver of atherosclerosis. Clinica Chimica Acta, 521, 251-257.
Zhou, H., Simion, V., Pierce, J. B., Haemmig, S., Chen, A. F., & Feinberg, M. W. (2021). LncRNA-MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and cis-modulation of MAP3K4. The FASEB Journal, 35, e21133.
Zhu, Y., You, J., Wei, W., Gu, J., Xu, C., & Gu, X. (2021). Downregulated lncRNA RCPCD promotes differentiation of embryonic stem cells into cardiac pacemaker-like cells by suppressing HCN4 promoter methylation. Cell Death & Disease, 12, 667.

Auteurs

Xiaosu Song (X)

Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China.

Fen Gao (F)

Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China.

Hong Li (H)

Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China.

Weiwei Qin (W)

Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China.

Chanjuan Chai (C)

Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China.

Guojuan Shi (G)

Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China.

Huiyu Yang (H)

Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH