Effects of Carbonaceous Materials with Different Structures on Cadmium Fractions and Microecology in Cadmium-Contaminated Soils.


Journal

International journal of environmental research and public health
ISSN: 1660-4601
Titre abrégé: Int J Environ Res Public Health
Pays: Switzerland
ID NLM: 101238455

Informations de publication

Date de publication:
28 09 2022
Historique:
received: 07 08 2022
revised: 24 09 2022
accepted: 26 09 2022
entrez: 14 10 2022
pubmed: 15 10 2022
medline: 18 10 2022
Statut: epublish

Résumé

Carbonaceous materials have proved to be effective in cadmium remediation, but their influences on soil microecology have not been studied well. Taking the structural differences and the maintenance of soil health as the entry point, we chose graphene (G), multi-walled carbon nanotubes (MWCNTs), and wetland plant-based biochar (ZBC) as natural and engineered carbonaceous materials to explore their effects on Cd fractions, nutrients, enzyme activities, and microbial communities in soils. The results showed that ZBC had stronger electronegativity and more oxygen-containing functional groups, which were related to its better performance in reducing soil acid-extractable cadmium (EX-Cd) among the three materials, with a reduction rate of 2.83-9.44%. Additionally, ZBC had greater positive effects in terms of improving soil properties, nutrients, and enzyme activities. Redundancy analysis and correlation analysis showed that ZBC could increase the content of organic matter and available potassium, enhance the activity of urease and sucrase, and regulate individual bacterial abundance, thereby reducing soil EX-Cd. Three carbonaceous materials could maintain the diversity of soil microorganisms and the stability of the microbial community structures to a certain extent, except for the high-dose application of ZBC. In conclusion, ZBC could better immobilize Cd and maintain soil health in a short period of time.

Identifiants

pubmed: 36231683
pii: ijerph191912381
doi: 10.3390/ijerph191912381
pmc: PMC9564624
pii:
doi:

Substances chimiques

Nanotubes, Carbon 0
Soil 0
Soil Pollutants 0
Cadmium 00BH33GNGH
Charcoal 16291-96-6
Graphite 7782-42-5
Sucrase EC 3.2.1.48
Urease EC 3.5.1.5
Potassium RWP5GA015D
Oxygen S88TT14065

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Références

Chemosphere. 2019 Mar;218:308-318
pubmed: 30476762
Bioresour Technol. 2017 Oct;241:887-899
pubmed: 28629105
Environ Pollut. 2018 Oct;241:557-565
pubmed: 29885626
J Hazard Mater. 2021 Oct 15;420:126655
pubmed: 34329082
Sci Total Environ. 2019 May 20;666:1126-1133
pubmed: 30970478
Environ Geochem Health. 2018 Feb;40(1):565
pubmed: 29302893
Bioinformatics. 2010 Oct 1;26(19):2460-1
pubmed: 20709691
J Environ Manage. 2018 Jan 1;205:99-106
pubmed: 28968591
Environ Sci Pollut Res Int. 2022 Jun;29(27):40745-40754
pubmed: 35083675
Bioresour Technol. 2016 Nov;219:778-781
pubmed: 27575336
Chemosphere. 2019 Feb;216:449-462
pubmed: 30384315
Sci Total Environ. 2018 Apr 15;621:1057-1065
pubmed: 29066203
Ecotoxicol Environ Saf. 2021 Jan 1;207:111294
pubmed: 32931971
Ecotoxicol Environ Saf. 2019 Sep 30;180:348-356
pubmed: 31102842
Environ Pollut. 2016 Feb;209:38-45
pubmed: 26629644
Environ Res. 2022 Oct;213:113723
pubmed: 35752329
Ecotoxicol Environ Saf. 2014 Oct;108:161-7
pubmed: 25063882
J Environ Manage. 2016 Oct 1;181:646-662
pubmed: 27562701
Ecotoxicol Environ Saf. 2018 Oct 30;162:348-353
pubmed: 30005408
Environ Sci Pollut Res Int. 2016 Jan;23(2):974-84
pubmed: 25772863
Ecotoxicol Environ Saf. 2017 Jun;140:37-47
pubmed: 28231504
Sci Total Environ. 2022 Feb 1;806(Pt 2):150484
pubmed: 34597966
Chemosphere. 2018 Sep;207:33-40
pubmed: 29772422
Sci Total Environ. 2017 Dec 1;599-600:1297-1307
pubmed: 28531947
Environ Pollut. 2020 Sep;264:114739
pubmed: 32434113
Chemosphere. 2007 Jan;66(4):775-82
pubmed: 16949129
Sci Total Environ. 2018 Apr 1;619-620:815-826
pubmed: 29166628
Ecotoxicol Environ Saf. 2019 Oct 30;182:109424
pubmed: 31299478
Small. 2013 Jan 14;9(1):115-23
pubmed: 23019062
J Environ Manage. 2020 May 1;261:110246
pubmed: 32148312
Sci Total Environ. 2020 Jan 1;698:134112
pubmed: 31783442
Sci Total Environ. 2017 Mar 1;581-582:601-611
pubmed: 28063658
Microbes Environ. 2017 Mar 31;32(1):61-70
pubmed: 28321007
Environ Sci Pollut Res Int. 2016 Aug;23(15):15532-43
pubmed: 27121017
Sci Total Environ. 2019 Apr 1;659:473-490
pubmed: 31096377
Environ Pollut. 2019 Mar;246:608-620
pubmed: 30605816
Environ Sci Technol. 2015 Apr 7;49(7):4627-35
pubmed: 25751159
Nat Methods. 2010 May;7(5):335-6
pubmed: 20383131
Chemosphere. 2014 Sep;111:320-6
pubmed: 24997935

Auteurs

Zihan Long (Z)

College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.

Chunya Ma (C)

Longyou Ecological Environmental Protection Agency, Quzhou 324400, China.
Longyou Ecological Environment Monitoring Station, Quzhou 324400, China.

Jian Zhu (J)

College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.

Ping Wang (P)

College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.

Yelin Zhu (Y)

College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.

Zhiming Liu (Z)

College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal
Cameroon Humans Uranium Trace Elements Environmental Monitoring
1.00
Oryza Agricultural Irrigation Potassium Sodium Soil

Classifications MeSH