Matere Bonds vs. Multivalent Halogen and Chalcogen Bonds: Three Case Studies.

DFT calculations X-ray structures chalcogen bond halogen bond matere bond

Journal

Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009

Informations de publication

Date de publication:
05 Oct 2022
Historique:
received: 18 09 2022
revised: 29 09 2022
accepted: 03 10 2022
entrez: 14 10 2022
pubmed: 15 10 2022
medline: 18 10 2022
Statut: epublish

Résumé

The term matere bond has been recently used to refer to an attractive noncovalent interaction between any element of group 7 acting as an electrophile and any atom (or group of atoms) acting as a nucleophile. The utilization of metals such as σ-hole donors is starting to attract the attention of the scientific community. In this manuscript, a comparison between matere bonds and well-known σ-hole interactions (halogen and chalcogen bonds) is carried out using three X-ray structures, retrieved from the Cambridge structural database (CSD), and density functional theory calculations (DFT). The novelty of this work resides in the utilization of a neutral Re(VII) system as the matere bond donor and multivalent chalcogen and halogen donors. In fact, as far as our knowledge extends, the description of σ-hole interactions in Se(VI) is unprecedented in the literature. The σ-hole interactions in Re(VII), Se(VI) and Cl(VII) electron acceptors are analyzed and compared using several computational tools.

Identifiants

pubmed: 36235133
pii: molecules27196597
doi: 10.3390/molecules27196597
pmc: PMC9571139
pii:
doi:

Substances chimiques

Chalcogens 0
Halogens 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Ministerio de ciencia e innovacion
ID : PID2020-115637GB-I00

Références

J Chem Inf Model. 2021 Aug 23;61(8):3945-3954
pubmed: 34375103
Phys Chem Chem Phys. 2017 Dec 13;19(48):32166-32178
pubmed: 29199313
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
J Chem Theory Comput. 2011 Mar 8;7(3):625-632
pubmed: 21516178
Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305
pubmed: 16240044
Phys Chem Chem Phys. 2006 Mar 7;8(9):1057-65
pubmed: 16633586
Chemphyschem. 2021 Nov 18;22(22):2281-2285
pubmed: 34541753
Phys Chem Chem Phys. 2013 Jul 21;15(27):11178-89
pubmed: 23450152
Chemistry. 2022 Sep 6;28(50):e202201660
pubmed: 35670547
Angew Chem Int Ed Engl. 2021 Sep 13;60(38):20723-20727
pubmed: 34260810
Phys Chem Chem Phys. 2018 Jan 24;20(4):2676-2692
pubmed: 29319082
Chem Commun (Camb). 2022 Aug 16;58(66):9274-9277
pubmed: 35904031
J Chem Phys. 2010 Apr 21;132(15):154104
pubmed: 20423165
J Am Chem Soc. 2017 Aug 16;139(32):11012-11015
pubmed: 28770602
Chem Rev. 2016 Feb 24;116(4):2478-601
pubmed: 26812185
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016 Apr;72(Pt 2):171-9
pubmed: 27048719
Angew Chem Int Ed Engl. 2020 Sep 28;59(40):17482-17487
pubmed: 32542948

Auteurs

Rosa M Gomila (RM)

Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.

Antonio Frontera (A)

Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.

Articles similaires

Schiff Bases Pyridines Microbial Sensitivity Tests Anti-Bacterial Agents Gram-Positive Bacteria
Copper Chalcogens Sulfides Temperature
Crystallography, X-Ray Halogens Molecular Structure Models, Molecular Quinoxalines
Chalcogens Sulfur Oxides Static Electricity Models, Molecular Sulfur Dioxide

Classifications MeSH