Highly selective and sensitive spectrofluorimetric method for determination of cypermethrin in different environmental samples.


Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
14 Oct 2022
Historique:
received: 04 04 2022
accepted: 07 10 2022
entrez: 14 10 2022
pubmed: 15 10 2022
medline: 19 10 2022
Statut: epublish

Résumé

A sensitive, selective, and simple spectrofluorimetric method for the detection and determination of cypermethrin (CYP) in various samples based on thioglycolic acid-caped Mn-doped ZnS quantum dots (TGA@Mn-ZnS-QDs) is reported. These quantum dots were synthesized using the Gonzalez method. The synthesized quantum dots were structurally characterized with the help of different spectroscopic techniques including X-ray diffraction (XRD) and energy dispersive X-ray (EDX) techniques and fluorescence spectroscopy. The quantum dots were used for spectrofluorimetric detection and determination of CYP. The emission peak of these quantum dots at 632 nm showed a linear quenching with increasing the concentration of CYP, noticing an excellent linear relationship between F°/F values and CYP in the range of 0.5-12 µg mL

Identifiants

pubmed: 36241946
doi: 10.1007/s10661-022-10640-5
pii: 10.1007/s10661-022-10640-5
doi:

Substances chimiques

Pesticides 0
Pyrethrins 0
Soil 0
Sulfides 0
Zinc Compounds 0
Water 059QF0KO0R
cypermethrin 1TR49121NP
zinc sulfide KPS085631O

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

890

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Al-Saidi, H. M., & Khan, S. (2022). Recent advances in thiourea based colorimetric and fluorescent chemosensors for detection of anions and neutral analytes: A review, 1–17. https://doi.org/10.1080/10408347.2022.2063017
Ali, S., Shah, M. R., Hussain, S., Khan, S., Latif, A., Ahmad, M., & Ali, M. (2021). A facile approach based on functionalized silver nanoparticles as a chemosensor for the detection of paraquat. Journal of Cluster Science. https://doi.org/10.1007/S10876-021-01978-W
doi: 10.1007/S10876-021-01978-W
Armenta, S., Quintás, G., Garrigues, S., & De La Guardia, M. (2005). A validated and fast procedure for FTIR determination of cypermethrin and chlorpyrifos. Talanta, 67(3), 634–639. https://doi.org/10.1016/J.TALANTA.2005.03.008
doi: 10.1016/J.TALANTA.2005.03.008
Atar, N., & Yola, M. L. (2018). Core-shell nanoparticles/two-dimensional (2D) hexagonal boron nitride nanosheets with molecularly imprinted polymer for electrochemical sensing of cypermethrin. Journal of the Electrochemical Society, 165(5), H255–H262. https://doi.org/10.1149/2.1311805JES
doi: 10.1149/2.1311805JES
Bissacot, D. Z., & Vassilieff, I. (1997). HPLC determination of flumethrin, deltamethrin, cypermethrin, and cyhalothrin residues in the milk and blood of lactating dairy cows. Journal of Analytical Toxicology, 21(5), 397–402. https://doi.org/10.1093/JAT/21.5.397
doi: 10.1093/JAT/21.5.397
Bradberry, S. M., Cage, S. A., Proudfoot, A. T., & Allister Vale, J. (2005). Poisoning due to pyrethroids. Toxicological Reviews, 24(2), 93–106. https://doi.org/10.2165/00139709-200524020-00003
doi: 10.2165/00139709-200524020-00003
Diaz-Diestra, D., Thapa, B., Beltran-Huarac, J., Weiner, B. R., & Morell, G. (2016). L-cysteine capped ZnS: Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. Biosensors and Bioelectronic, 87, 693–700. https://doi.org/10.1016/j.bios.2016.09.022
doi: 10.1016/j.bios.2016.09.022
Giorgi, M., Cugini, I., Meucci, V., Bestini, S., Giuliani, M., & Soldani, G. (2005). New HPLC and GC-MS methods for the investigation of cypermethrin in edible portions of fish: Development, validation and comparison. Veterinary Research Communications, 29(SUPPL. 2), 293–295. https://doi.org/10.1007/S11259-005-0065-6
doi: 10.1007/S11259-005-0065-6
Gul, Z., Khan, S., Ullah, S., Ullah, H., Khan, M. U., Ullah, M., & Altaf, A. A. (2022a). Recent development in coordination compounds as a sensor for cyanide ions in biological and environmental segments. Critical Reviews in Analytical Chemistry. https://doi.org/10.1080/10408347.2022.2085027
doi: 10.1080/10408347.2022.2085027
Gul, Z., Ullah, S., Khan, S., Ullah, H., Khan, M. U., Ullah, M., et al. (2022b). Recent progress in nanoparticles based sensors for the detection of mercury (II) ions in environmental and biological samples. 1–17. https://doi.org/10.1080/10408347.2022.2049676
Hanzawa, Y., Kasashima, Y., Hashimoto, K., Sasaki, T., Tomisaki, K., Mino, T., et al. (2013). Reaction of carboxylic acids with vinyl ethers under solvent-free conditions using molecular iodine as a catalyst. Journal of Oleo Science, 62(1), 29–38. https://doi.org/10.5650/JOS.62.29
doi: 10.5650/JOS.62.29
Keleş, E., Aydıner, B., Nural, Y., Seferoğlu, N., Şahin, E., & Seferoğlu, Z. (2020). Cover feature: A new mechanism for selective recognition of cyanide in organic and aqueous solution (Eur. J. Org. Chem. 30/2020). European Journal of Organic Chemistry, 2020(30), 4640–4640. https://doi.org/10.1002/EJOC.202001038
Khan, E., Khan, S., Gul, Z., & Muhammad, M. (2020). Medicinal importance, coordination chemistry with selected metals (Cu. A review. Critical Reviews in Analytical Chemistry. Taylor and Francis Ltd. https://doi.org/10.1080/10408347.2020.1777523
doi: 10.1080/10408347.2020.1777523
Khan, S., Chen, X., Almahri, A., Allehyani, E. S., Alhumaydhi, F. A., Ibrahim, M. M., & Ali, S. (2021). Recent developments in fluorescent and colorimetric chemosensors based on schiff bases for metallic cations detection: A review. Journal of Environmental Chemical Engineering, 9(6), 106381. https://doi.org/10.1016/J.JECE.2021.106381
doi: 10.1016/J.JECE.2021.106381
Khan, S., Muhammad, M., Algethami, J. S., Al-Saidi, H. M., Almahri, A., & Hassanian, A. A. (2022). Synthesis, characterization and applications of schiff base chemosensor for determination of Cr(III) ions. Journal of Fluorescence. https://doi.org/10.1007/S10895-022-02990-7
doi: 10.1007/S10895-022-02990-7
Kumar Singh, A., Nath Tiwari, M., Prakash, O., & Pratap Singh, M. (2012). A current review of cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neurodegeneration. Current Neuropharmacology, 10(1), 64–71. https://doi.org/10.2174/157015912799362779
doi: 10.2174/157015912799362779
Leepheng, P., & Phromyothin, D. (2019). Electrochemical analysis of cypermethrin using a gold printed circuit board electrode modified with poly(methyl methacrylate). Japanese Journal of Applied Physics, 58(SD). https://doi.org/10.7567/1347-4065/AB0DF2
Leung, W., Limwichean, S., Nuntawong, N., Eiamchai, P., Kalasung, S., Nimittrakoolchai, O. U., & Houngkamhang, N. (2020). Rapid detection of cypermethrin by using surface-enhanced raman scattering technique. Key Engineering Materials, 853, 102–106. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.853.102
doi: 10.4028/WWW.SCIENTIFIC.NET/KEM.853.102
Mihaylova, V. V, Todorov, B. R., Lyubomirova, V. V., & Djingova, R. G. (2021). Determination of imidacloprid, cypermethrin and chlorpyrifos ethyl in water samples using high-performance liquid chromatography. Bulgarian Chemical Communications, 53(1), 55–60. https://doi.org/10.34049/bcc.53.1.5297
Mohammad Abu-Taweel, G., Ibrahim, M. M., Khan, S., Al-Saidi, H. M., Alshamrani, M., Alhumaydhi, F. A., & Alharthi, S. S. (2022). Medicinal importance and chemosensing applications of pyridine derivatives: A review. Critical Reviews in Analytical Chemistry. https://doi.org/10.1080/10408347.2022.2089839
doi: 10.1080/10408347.2022.2089839
Muhamad, H., Zainudin, H., Kartini, N., & Bakar, A. (2012). Comparative study of different clean-up techniques for the determination of λ-cyhalothrin and cypermethrin in palm oil matrices by gas chromatography with electron capture detection. Food Chemistry, 134, 2489–2496. https://doi.org/10.1016/j.foodchem.2012.04.095
doi: 10.1016/j.foodchem.2012.04.095
Muhammad, M., Khan, S., & Fayaz, H. (2021). Charge-transfer complex–based spectrophotometric method for the determination of mesotrione in environmental samples. Environmental Monitoring and Assessment, 193(10). https://doi.org/10.1007/S10661-021-09432-0
Muhammad, M., Khan, S., Shehzadi, S. A., Gul, Z., Al-Saidi, H. M., Waheed Kamran, A., & Alhumaydhi, F. A. (2022). Recent advances in colorimetric and fluorescent chemosensors based on thiourea derivatives for metallic cations: A review. Dyes and Pigments, 205. https://doi.org/10.1016/J.DYEPIG.2022.110477
Nsibande, S. A., & Forbes, P. B. C. (2016). Fluorescence detection of pesticides using quantum dot materials – A review. Analytica Chimica Acta, 945, 9–22. https://doi.org/10.1016/J.ACA.2016.10.002
doi: 10.1016/J.ACA.2016.10.002
Nural, Y., Keleş, E., Aydıner, B., Seferoğlu, N., Atabey, H., & Seferoğlu, Z. (2021). New naphthoquinone-imidazole hybrids: Synthesis, anion recognition properties, DFT studies and acid dissociation constants. Journal of Molecular Liquids, 327. https://doi.org/10.1016/J.MOLLIQ.2020.114855
Nurdin, M., Maulidiyah, M., Salim, L. O. A., Muzakkar, M. Z., & Umar, A. A. (2019). High performance cypermethrin pesticide detection using anatase TiO2-carbon paste nanocomposites electrode. Microchemical Journal, 145, 756–761. https://doi.org/10.1016/J.MICROC.2018.11.050
doi: 10.1016/J.MICROC.2018.11.050
Patel, J., Jain, B., Singh, A. K., Susan, M. A. B. H., & Jean-Paul, L. (2020). Mn-doped ZnS quantum dots–An effective nanoscale sensor. Microchemical Journal, 155. https://doi.org/10.1016/J.MICROC.2020.104755
Sørensen, L. K., & Hansen, H. (2003). Determination of cypermethrin in salmon by LC-APCI-MS. Analytical Letters, 36(1), 191–201. https://doi.org/10.1081/AL-120017272
doi: 10.1081/AL-120017272
Sotelo-Gonzalez, E., Fernandez-Argüelles, M. T., Costa-Fernandez, J. M., & Sanz-Medel, A. (2012). Mn-doped ZnS quantum dots for the determination of acetone by phosphorescence attenuation. Analytica Chimica Acta, 712, 120–126. https://doi.org/10.1016/J.ACA.2011.11.023
doi: 10.1016/J.ACA.2011.11.023
Yadav, B. (2018). Cypermethrin toxicity: A review. Journal of Forensic Sciences & Criminal Investigation, 9(4). https://doi.org/10.19080/JFSCI.2018.09.555767
Yan, H., Han, Y., & Du, J. (2012). Combination of solid-phase extraction and dispersive liquid-liquid microextraction for detection of cypermethrin and permethrin in environmental water. Analytical Methods, 4(9), 3002–3006. https://doi.org/10.1039/C2AY25271F
doi: 10.1039/C2AY25271F
Zhang, C., Zhao, H., Wu, M., Hu, X., Cai, X., Ping, L., & Li, Z. (2012). Simultaneous determination of procymidone, pyridaben and beta-cypermethrin residues in tea solution by GC-ECD. Journal of Chromatographic Science, 50(10), 940–944. https://doi.org/10.1093/CHROMSCI/BMS094
doi: 10.1093/CHROMSCI/BMS094

Auteurs

Mian Muhammad (M)

Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan. mianchem@uom.edu.pk.

Sikandar Khan (S)

Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan. sikandarkhan590@yahoo.com.

Gul Rahim (G)

Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan.

Walaa Alharbi (W)

Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia.

Khadijah H Alharbi (KH)

Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction

Classifications MeSH