Quantitative analysis of early-stage EEG reactivity predicts awakening and recovery of consciousness in patients with severe brain injury.

EEG reactivity awakening brain injury coma electroencephalography intensive care unit neuroprognosis neurotrauma quantitative EEG

Journal

British journal of anaesthesia
ISSN: 1471-6771
Titre abrégé: Br J Anaesth
Pays: England
ID NLM: 0372541

Informations de publication

Date de publication:
02 2023
Historique:
received: 08 04 2022
revised: 06 09 2022
accepted: 09 09 2022
pubmed: 16 10 2022
medline: 24 1 2023
entrez: 15 10 2022
Statut: ppublish

Résumé

Decisions of withdrawal of life-sustaining therapy for patients with severe brain injury are often based on prognostic evaluations such as analysis of electroencephalography (EEG) reactivity (EEG-R). However, EEG-R usually relies on visual assessment, which requires neurophysiological expertise and is prone to inter-rater variability. We hypothesised that quantitative analysis of EEG-R obtained 3 days after patient admission can identify new markers of subsequent awakening and consciousness recovery. In this prospective observational study of patients with severe brain injury requiring mechanical ventilation, quantitative EEG-R was assessed using standard 11-lead EEG with frequency-based (power spectral density) and functional connectivity-based (phase-lag index) analyses. Associations between awakening in the intensive care unit (ICU) and reactivity to auditory and nociceptive stimulations were assessed with logistic regression. Secondary outcomes included in-ICU mortality and 3-month Coma Recovery Scale-Revised (CRS-R) score. Of 116 patients, 86 (74%) awoke in the ICU. Among quantitative EEG-R markers, variation in phase-lag index connectivity in the delta frequency band after noise stimulation was associated with awakening (adjusted odds ratio=0.89, 95% confidence interval: 0.81-0.97, P=0.02 corrected for multiple tests), independently of age, baseline severity, and sedation. This new marker was independently associated with improved 3-month CRS-R (adjusted β=-0.16, standard error 0.075, P=0.048), but not with mortality (adjusted odds ratio=1.08, 95% CI: 0.99-1.18, P=0.10). An early-stage quantitative EEG-R marker was independently associated with awakening and 3-month level of consciousness in patients with severe brain injury. This promising marker based on functional connectivity will need external validation before potential integration into a multimodal prognostic model.

Sections du résumé

BACKGROUND
Decisions of withdrawal of life-sustaining therapy for patients with severe brain injury are often based on prognostic evaluations such as analysis of electroencephalography (EEG) reactivity (EEG-R). However, EEG-R usually relies on visual assessment, which requires neurophysiological expertise and is prone to inter-rater variability. We hypothesised that quantitative analysis of EEG-R obtained 3 days after patient admission can identify new markers of subsequent awakening and consciousness recovery.
METHODS
In this prospective observational study of patients with severe brain injury requiring mechanical ventilation, quantitative EEG-R was assessed using standard 11-lead EEG with frequency-based (power spectral density) and functional connectivity-based (phase-lag index) analyses. Associations between awakening in the intensive care unit (ICU) and reactivity to auditory and nociceptive stimulations were assessed with logistic regression. Secondary outcomes included in-ICU mortality and 3-month Coma Recovery Scale-Revised (CRS-R) score.
RESULTS
Of 116 patients, 86 (74%) awoke in the ICU. Among quantitative EEG-R markers, variation in phase-lag index connectivity in the delta frequency band after noise stimulation was associated with awakening (adjusted odds ratio=0.89, 95% confidence interval: 0.81-0.97, P=0.02 corrected for multiple tests), independently of age, baseline severity, and sedation. This new marker was independently associated with improved 3-month CRS-R (adjusted β=-0.16, standard error 0.075, P=0.048), but not with mortality (adjusted odds ratio=1.08, 95% CI: 0.99-1.18, P=0.10).
CONCLUSIONS
An early-stage quantitative EEG-R marker was independently associated with awakening and 3-month level of consciousness in patients with severe brain injury. This promising marker based on functional connectivity will need external validation before potential integration into a multimodal prognostic model.

Identifiants

pubmed: 36243578
pii: S0007-0912(22)00506-2
doi: 10.1016/j.bja.2022.09.005
pii:
doi:

Types de publication

Observational Study Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e225-e232

Informations de copyright

Copyright © 2022 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

Auteurs

Eléonore Bouchereau (E)

Anaesthesiology and ICU Department, Sainte Anne Hospital, Paris, France; Institute of Psychiatry and Neurosciences of Paris (IPNP), INSERM U1266, Paris, France. Electronic address: e.bouchereau@ghu-paris.fr.

Angela Marchi (A)

Epileptology and Cerebral Rhythmology Department, APHM, Timone Hospital, Marseille, France.

Bertrand Hermann (B)

ICU Department, Hôpital Européen Georges Pompidou, Paris, France; Institut du Cerveau et de la Moelle épinière - ICM, Paris, France; Université Paris Cité, Paris, France.

Estelle Pruvost-Robieux (E)

Institute of Psychiatry and Neurosciences of Paris (IPNP), INSERM U1266, Paris, France; Université Paris Cité, Paris, France; Neurophysiology Department, Sainte Anne Hospital, Paris, France.

Eléonore Guinard (E)

Institute of Psychiatry and Neurosciences of Paris (IPNP), INSERM U1266, Paris, France; Université Paris Cité, Paris, France; Neurophysiology Department, Sainte Anne Hospital, Paris, France.

Camille Legouy (C)

Anaesthesiology and ICU Department, Sainte Anne Hospital, Paris, France.

Caroline Schimpf (C)

Anaesthesiology and ICU Department, Sainte Anne Hospital, Paris, France.

Aurélien Mazeraud (A)

Anaesthesiology and ICU Department, Sainte Anne Hospital, Paris, France; Université Paris Cité, Paris, France.

Jean-Claude Baron (JC)

Institute of Psychiatry and Neurosciences of Paris (IPNP), INSERM U1266, Paris, France; Université Paris Cité, Paris, France; Neurology Department, GHU Paris Psychiatry and Neurosciences, Sainte Anne Hospital, Paris, France; FHU NeuroVasc, Paris, France.

Céline Ramdani (C)

Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France.

Martine Gavaret (M)

Institute of Psychiatry and Neurosciences of Paris (IPNP), INSERM U1266, Paris, France; Université Paris Cité, Paris, France; Neurophysiology Department, Sainte Anne Hospital, Paris, France; FHU NeuroVasc, Paris, France.

Tarek Sharshar (T)

Anaesthesiology and ICU Department, Sainte Anne Hospital, Paris, France; Institute of Psychiatry and Neurosciences of Paris (IPNP), INSERM U1266, Paris, France; Université Paris Cité, Paris, France; FHU NeuroVasc, Paris, France.

Guillaume Turc (G)

Institute of Psychiatry and Neurosciences of Paris (IPNP), INSERM U1266, Paris, France; Université Paris Cité, Paris, France; Neurology Department, GHU Paris Psychiatry and Neurosciences, Sainte Anne Hospital, Paris, France; FHU NeuroVasc, Paris, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH