Trends in Intelligent and AI-Based Software Engineering Processes: A Deep Learning-Based Software Process Model Recommendation Method.


Journal

Computational intelligence and neuroscience
ISSN: 1687-5273
Titre abrégé: Comput Intell Neurosci
Pays: United States
ID NLM: 101279357

Informations de publication

Date de publication:
2022
Historique:
received: 24 08 2022
revised: 17 09 2022
accepted: 20 09 2022
entrez: 17 10 2022
pubmed: 18 10 2022
medline: 19 10 2022
Statut: epublish

Résumé

In recent years, numerous studies have successfully implemented machine learning strategies in a wide range of application areas. Therefore, several different deep learning models exist, each one tailored to a certain software task. Using deep learning models provides numerous advantages for the software development industry. Testing and maintaining software is a critical concern today. Software engineers have many responsibilities while developing a software system, including coding, testing, and delivering the software to users

Identifiants

pubmed: 36248934
doi: 10.1155/2022/1960684
pmc: PMC9556201
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1960684

Informations de copyright

Copyright © 2022 Fahad H. Alshammari.

Déclaration de conflit d'intérêts

The author declares no conflicts of interest.

Auteurs

Fahad H Alshammari (FH)

College of Computing and Information Technology, Shaqra University, Shaqra, Saudi Arabia.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis

Classifications MeSH