Development of Pyrazine-Anilinobenzamides as Histone Deacetylase HDAC1-3 Selective Inhibitors and Biological Testing Against Pancreas Cancer Cell Lines.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2023
Historique:
entrez: 18 10 2022
pubmed: 19 10 2022
medline: 21 10 2022
Statut: ppublish

Résumé

Class I histone deacetylase (HDAC) enzymes are key regulators of cell proliferation and are frequently dysregulated in cancer cells. Here we describe the synthesis of a novel series of class-I selective HDAC inhibitors containing anilinobenzamide moieties as ZBG connected with a central (piperazin-1-yl)pyrazine moiety. Compounds were tested in vitro against class-I HDAC1, 2, and 3 isoforms. Some highly potent HDAC inhibitors were obtained and were tested in pancreatic cancer cells and showed promising activity. Moreover, we summarize how the growth-inhibitory effects of these compounds can be determined in murine pancreatic cancer cell lines.

Identifiants

pubmed: 36255623
doi: 10.1007/978-1-0716-2788-4_10
doi:

Substances chimiques

Histone Deacetylase Inhibitors 0
Pyrazines 0
Histone Deacetylases EC 3.5.1.98
Protein Isoforms 0
HDAC1 protein, human EC 3.5.1.98
Histone Deacetylase 1 EC 3.5.1.98

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

145-155

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Wagner FF, Wesmall Yi UM, Lewis MC et al (2013) Small molecule inhibitors of zinc-dependent histone deacetylases. Neurotherapeutics 10(4):589–604. https://doi.org/10.1007/s13311-013-0226-1
doi: 10.1007/s13311-013-0226-1 pubmed: 24101253 pmcid: 3805861
Melesina J, Simoben CV, Praetorius L et al (2021) Strategies to design selective histone deacetylase inhibitors. ChemMedChem 16(9):1336–1359. https://doi.org/10.1002/cmdc.202000934
doi: 10.1002/cmdc.202000934 pubmed: 33428327
Sarkar R, Banerjee S, Amin SA et al (2020) Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: a review. Eur J Med Chem 192:112171. https://doi.org/10.1016/j.ejmech.2020.112171
doi: 10.1016/j.ejmech.2020.112171 pubmed: 32163814
Mottamal M, Zheng SL, Huang TL et al (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20(3):3898–3941. https://doi.org/10.3390/molecules20033898
doi: 10.3390/molecules20033898 pubmed: 25738536 pmcid: 4372801
Yang FF, Zhao N, Ge D et al (2019) Next-generation of selective histone deacetylase inhibitors. RSC Adv 9(34):19571–19583. https://doi.org/10.1039/c9ra02985k
doi: 10.1039/c9ra02985k pubmed: 35519364 pmcid: 9065321
Prakash S, Foster BJ, Meyer M et al (2001) Chronic oral administration of CI-994: a phase 1 study. Investig New Drugs 19(1):1–11. https://doi.org/10.1023/a:1006489328324
doi: 10.1023/a:1006489328324
Saito A, Yamashita T, Mariko Y et al (1999) A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A 96(8):4592–4597. https://doi.org/10.1073/pnas.96.8.4592
doi: 10.1073/pnas.96.8.4592 pubmed: 10200307 pmcid: 16377
Batlevi CL, Crump M, Andreadis C et al (2017) A phase 2 study of mocetinostat, a histone deacetylase inhibitor, in relapsed or refractory lymphoma. Br J Haematol 178(3):434–441. https://doi.org/10.1111/bjh.14698
doi: 10.1111/bjh.14698 pubmed: 28440559 pmcid: 5576135
San Jose-Eneriz E, Gimenez-Camino N, Agirre X et al (2019) HDAC inhibitors in acute myeloid leukemia. Cancers (Basel) 11(11):1794. https://doi.org/10.3390/cancers11111794
doi: 10.3390/cancers11111794
Fratta E, Montico B, Rizzo A et al (2016) Epimutational profile of hematologic malignancies as attractive target for new epigenetic therapies. Oncotarget 7(35):57327–57350. https://doi.org/10.18632/oncotarget.10033
doi: 10.18632/oncotarget.10033 pubmed: 27329599 pmcid: 5302993
Ho TCS, Chan AHY, Ganesan A (2020) Thirty years of HDAC inhibitors: 2020 insight and hindsight. J Med Chem 63(21):12460–12484. https://doi.org/10.1021/acs.jmedchem.0c00830
doi: 10.1021/acs.jmedchem.0c00830 pubmed: 32608981
Wagner FF, Weiwer M, Steinbacher S et al (2016) Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors. Bioorg Med Chem 24(18):4008–4015. https://doi.org/10.1016/j.bmc.2016.06.040
doi: 10.1016/j.bmc.2016.06.040 pubmed: 27377864
Moradei OM, Mallais TC, Frechette S et al (2007) Novel aminophenyl benzamide-type histone deacetylase inhibitors with enhanced potency and selectivity. J Med Chem 50(23):5543–5546. https://doi.org/10.1021/jm701079h
doi: 10.1021/jm701079h pubmed: 17941625
Min C, Moore N, Shearstone JR et al (2017) Selective inhibitors of histone deacetylases 1 and 2 synergize with Azacitidine in acute myeloid leukemia. PLoS One 12(1):e0169128. https://doi.org/10.1371/journal.pone.0169128
doi: 10.1371/journal.pone.0169128 pubmed: 28060870 pmcid: 5218480
Arts J, King P, Marien A et al (2009) JNJ-26481585, a novel “second-generation” Oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin Cancer Res 15(22):6841–6851. https://doi.org/10.1158/1078-0432.Ccr-09-0547
doi: 10.1158/1078-0432.Ccr-09-0547 pubmed: 19861438
Bayer S, Wirth M (2017) Engineering of conditional class I Hdac knockout mice and generation of a time-spatial knockout by a dual recombination system. Methods Mol Biol 1510:193–209. https://doi.org/10.1007/978-1-4939-6527-4_14
doi: 10.1007/978-1-4939-6527-4_14 pubmed: 27761822
Ibrahim HS, Abdelsalam M, Zeyn Y et al (2022) Synthesis, molecular docking and biological characterization of pyrazine linked 2-aminobenzamides as new class I selective histone deacetylase (HDAC) inhibitors with anti-leukemic activity. Int J Mol Sci 23(1):369. https://doi.org/10.3390/ijms23010369
doi: 10.3390/ijms23010369

Auteurs

Mohamed Abdelsalam (M)

Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany.
Institute of Pharmacy, University of Alexandria, Alexandria, Egypt.

Hany S Ibrahim (HS)

Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany.

Lukas Krauss (L)

Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.

Matthes Zessin (M)

Institute of Biochemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany.

Anita Vecchio (A)

Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany.

Sieglinde Hastreiter (S)

Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.
Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany.

Mike Schutkowski (M)

Institute of Biochemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany.

Günter Schneider (G)

Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.

Wolfgang Sippl (W)

Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany. wolfgang.sippl@pharmazie.uni-halle.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH