Development of Pyrazine-Anilinobenzamides as Histone Deacetylase HDAC1-3 Selective Inhibitors and Biological Testing Against Pancreas Cancer Cell Lines.
Anilinobenzamides
Capping group
Class-I histone deacetylases inhibitors
HDAC
Pancreas cancer
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2023
2023
Historique:
entrez:
18
10
2022
pubmed:
19
10
2022
medline:
21
10
2022
Statut:
ppublish
Résumé
Class I histone deacetylase (HDAC) enzymes are key regulators of cell proliferation and are frequently dysregulated in cancer cells. Here we describe the synthesis of a novel series of class-I selective HDAC inhibitors containing anilinobenzamide moieties as ZBG connected with a central (piperazin-1-yl)pyrazine moiety. Compounds were tested in vitro against class-I HDAC1, 2, and 3 isoforms. Some highly potent HDAC inhibitors were obtained and were tested in pancreatic cancer cells and showed promising activity. Moreover, we summarize how the growth-inhibitory effects of these compounds can be determined in murine pancreatic cancer cell lines.
Identifiants
pubmed: 36255623
doi: 10.1007/978-1-0716-2788-4_10
doi:
Substances chimiques
Histone Deacetylase Inhibitors
0
Pyrazines
0
Histone Deacetylases
EC 3.5.1.98
Protein Isoforms
0
HDAC1 protein, human
EC 3.5.1.98
Histone Deacetylase 1
EC 3.5.1.98
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
145-155Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Wagner FF, Wesmall Yi UM, Lewis MC et al (2013) Small molecule inhibitors of zinc-dependent histone deacetylases. Neurotherapeutics 10(4):589–604. https://doi.org/10.1007/s13311-013-0226-1
doi: 10.1007/s13311-013-0226-1
pubmed: 24101253
pmcid: 3805861
Melesina J, Simoben CV, Praetorius L et al (2021) Strategies to design selective histone deacetylase inhibitors. ChemMedChem 16(9):1336–1359. https://doi.org/10.1002/cmdc.202000934
doi: 10.1002/cmdc.202000934
pubmed: 33428327
Sarkar R, Banerjee S, Amin SA et al (2020) Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: a review. Eur J Med Chem 192:112171. https://doi.org/10.1016/j.ejmech.2020.112171
doi: 10.1016/j.ejmech.2020.112171
pubmed: 32163814
Mottamal M, Zheng SL, Huang TL et al (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20(3):3898–3941. https://doi.org/10.3390/molecules20033898
doi: 10.3390/molecules20033898
pubmed: 25738536
pmcid: 4372801
Yang FF, Zhao N, Ge D et al (2019) Next-generation of selective histone deacetylase inhibitors. RSC Adv 9(34):19571–19583. https://doi.org/10.1039/c9ra02985k
doi: 10.1039/c9ra02985k
pubmed: 35519364
pmcid: 9065321
Prakash S, Foster BJ, Meyer M et al (2001) Chronic oral administration of CI-994: a phase 1 study. Investig New Drugs 19(1):1–11. https://doi.org/10.1023/a:1006489328324
doi: 10.1023/a:1006489328324
Saito A, Yamashita T, Mariko Y et al (1999) A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A 96(8):4592–4597. https://doi.org/10.1073/pnas.96.8.4592
doi: 10.1073/pnas.96.8.4592
pubmed: 10200307
pmcid: 16377
Batlevi CL, Crump M, Andreadis C et al (2017) A phase 2 study of mocetinostat, a histone deacetylase inhibitor, in relapsed or refractory lymphoma. Br J Haematol 178(3):434–441. https://doi.org/10.1111/bjh.14698
doi: 10.1111/bjh.14698
pubmed: 28440559
pmcid: 5576135
San Jose-Eneriz E, Gimenez-Camino N, Agirre X et al (2019) HDAC inhibitors in acute myeloid leukemia. Cancers (Basel) 11(11):1794. https://doi.org/10.3390/cancers11111794
doi: 10.3390/cancers11111794
Fratta E, Montico B, Rizzo A et al (2016) Epimutational profile of hematologic malignancies as attractive target for new epigenetic therapies. Oncotarget 7(35):57327–57350. https://doi.org/10.18632/oncotarget.10033
doi: 10.18632/oncotarget.10033
pubmed: 27329599
pmcid: 5302993
Ho TCS, Chan AHY, Ganesan A (2020) Thirty years of HDAC inhibitors: 2020 insight and hindsight. J Med Chem 63(21):12460–12484. https://doi.org/10.1021/acs.jmedchem.0c00830
doi: 10.1021/acs.jmedchem.0c00830
pubmed: 32608981
Wagner FF, Weiwer M, Steinbacher S et al (2016) Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors. Bioorg Med Chem 24(18):4008–4015. https://doi.org/10.1016/j.bmc.2016.06.040
doi: 10.1016/j.bmc.2016.06.040
pubmed: 27377864
Moradei OM, Mallais TC, Frechette S et al (2007) Novel aminophenyl benzamide-type histone deacetylase inhibitors with enhanced potency and selectivity. J Med Chem 50(23):5543–5546. https://doi.org/10.1021/jm701079h
doi: 10.1021/jm701079h
pubmed: 17941625
Min C, Moore N, Shearstone JR et al (2017) Selective inhibitors of histone deacetylases 1 and 2 synergize with Azacitidine in acute myeloid leukemia. PLoS One 12(1):e0169128. https://doi.org/10.1371/journal.pone.0169128
doi: 10.1371/journal.pone.0169128
pubmed: 28060870
pmcid: 5218480
Arts J, King P, Marien A et al (2009) JNJ-26481585, a novel “second-generation” Oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin Cancer Res 15(22):6841–6851. https://doi.org/10.1158/1078-0432.Ccr-09-0547
doi: 10.1158/1078-0432.Ccr-09-0547
pubmed: 19861438
Bayer S, Wirth M (2017) Engineering of conditional class I Hdac knockout mice and generation of a time-spatial knockout by a dual recombination system. Methods Mol Biol 1510:193–209. https://doi.org/10.1007/978-1-4939-6527-4_14
doi: 10.1007/978-1-4939-6527-4_14
pubmed: 27761822
Ibrahim HS, Abdelsalam M, Zeyn Y et al (2022) Synthesis, molecular docking and biological characterization of pyrazine linked 2-aminobenzamides as new class I selective histone deacetylase (HDAC) inhibitors with anti-leukemic activity. Int J Mol Sci 23(1):369. https://doi.org/10.3390/ijms23010369
doi: 10.3390/ijms23010369