Rapid transmission and tight bottlenecks constrain the evolution of highly transmissible SARS-CoV-2 variants.


Journal

bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187

Informations de publication

Date de publication:
14 Oct 2022
Historique:
entrez: 20 10 2022
pubmed: 21 10 2022
medline: 21 10 2022
Statut: epublish

Résumé

Transmission bottlenecks limit the spread of novel mutations and reduce the efficiency of natural selection along a transmission chain. Many viruses exhibit tight bottlenecks, and studies of early SARS-CoV-2 lineages identified a bottleneck of 1-3 infectious virions. While increased force of infection, host receptor binding, or immune evasion may influence bottleneck size, the relationship between transmissibility and the transmission bottleneck is unclear. Here, we compare the transmission bottleneck of non-variant-of-concern (non-VOC) SARS-CoV-2 lineages to those of the Alpha, Delta, and Omicron variants. We sequenced viruses from 168 individuals in 65 multiply infected households in duplicate to high depth of coverage. In 110 specimens collected close to the time of transmission, within-host diversity was extremely low. At a 2% frequency threshold, 51% had no intrahost single nucleotide variants (iSNV), and 42% had 1-2 iSNV. In 64 possible transmission pairs with detectable iSNV, we identified a bottleneck of 1 infectious virion (95% CI 1-1) for Alpha, Delta, and Omicron lineages and 2 (95% CI 2-2) in non-VOC lineages. The latter was driven by a single iSNV shared in one non-VOC household. The tight transmission bottleneck in SARS-CoV-2 is due to low genetic diversity at the time of transmission, a relationship that may be more pronounced in rapidly transmissible variants. The tight bottlenecks identified here will limit the development of highly mutated VOC in typical transmission chains, adding to the evidence that selection over prolonged infections in immunocompromised patients may drive their evolution.

Identifiants

pubmed: 36263068
doi: 10.1101/2022.10.12.511991
pmc: PMC9580385
pii:
doi:

Types de publication

Preprint

Langues

eng

Commentaires et corrections

Type : UpdateIn

Références

Cell Host Microbe. 2014 Nov 12;16(5):691-700
pubmed: 25456074
J Med Virol. 2022 Apr;94(4):1641-1649
pubmed: 34914115
PLoS Pathog. 2011 Jul;7(7):e1002122
pubmed: 21750676
Elife. 2022 Feb 09;11:
pubmed: 35138250
J Infect Chemother. 2012 Dec;18(6):865-71
pubmed: 22661221
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17891-6
pubmed: 17971440
Nat Commun. 2020 Dec 9;11(1):6319
pubmed: 33298930
Nat Genet. 2016 Feb;48(2):195-200
pubmed: 26727660
Annu Rev Virol. 2015 Nov;2(1):161-79
pubmed: 26958911
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7552-7
pubmed: 18490657
Nature. 2022 Feb;602(7897):487-495
pubmed: 34942634
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Virus Evol. 2022 Aug 11;8(2):veac050
pubmed: 35996593
J Med Virol. 2022 Nov;94(11):5251-5259
pubmed: 35798681
PLoS Pathog. 2021 Apr 7;17(4):e1009499
pubmed: 33826681
Science. 2021 Aug 6;373(6555):642-648
pubmed: 34168070
J Virol. 2014 Jul;88(13):7485-92
pubmed: 24741099
PLoS Pathog. 2021 Aug 23;17(8):e1009849
pubmed: 34424945
Lancet Infect Dis. 2022 May;22(5):603-610
pubmed: 35176230
Elife. 2018 May 03;7:
pubmed: 29683424
Viruses. 2018 Nov 13;10(11):
pubmed: 30428545
J Med Virol. 2022 May;94(5):1825-1832
pubmed: 35023191
Nat Commun. 2022 Jan 24;13(1):460
pubmed: 35075154
J Virol. 2017 Jun 26;91(14):
pubmed: 28468874
Nature. 2022 Mar;603(7902):706-714
pubmed: 35104837
Science. 2021 Dec 10;374(6573):1353-1360
pubmed: 34698504
Virology. 2018 Jun 20;521:138-148
pubmed: 29935423
Curr Opin Virol. 2012 Oct;2(5):546-55
pubmed: 22921636
Nat Med. 2022 Jul;28(7):1491-1500
pubmed: 35395151
Cold Spring Harb Perspect Med. 2022 May 27;12(5):
pubmed: 35444005
BMC Evol Biol. 2006 Mar 23;6:28
pubmed: 16556318
Nat Commun. 2020 Nov 25;11(1):5986
pubmed: 33239633
J Virol. 2006 Sep;80(17):8345-50
pubmed: 16912285
Sci Transl Med. 2021 Oct 27;13(617):eabj3222
pubmed: 34705522
Elife. 2021 Aug 13;10:
pubmed: 34387545
Curr Opin Virol. 2018 Feb;28:20-25
pubmed: 29107838
Science. 2021 Apr 16;372(6539):
pubmed: 33688063
Virology. 2008 Mar 1;372(1):176-86
pubmed: 18023837
Nature. 2022 Mar;603(7902):715-720
pubmed: 35104836
Science. 2021 Dec 24;374(6575):1626-1632
pubmed: 34735219
Nat Genet. 2019 Sep;51(9):1298-1301
pubmed: 30804564
Sci Transl Med. 2021 Oct 27;13(617):eabh1803
pubmed: 34705523
Genome Biol. 2019 Jan 8;20(1):8
pubmed: 30621750
Sci Transl Med. 2020 Dec 9;12(573):
pubmed: 33229462
Virus Evol. 2022 Jun 16;8(2):veac052
pubmed: 35799885
PLoS Pathog. 2011 Sep;7(9):e1002243
pubmed: 21912520
Influenza Other Respir Viruses. 2021 Mar;15(2):227-234
pubmed: 33107200

Auteurs

Emily E Bendall (EE)

Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.

Amy Callear (A)

Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.

Amy Getz (A)

Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.

Kendra Goforth (K)

Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.

Drew Edwards (D)

Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.

Arnold S Monto (AS)

Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.

Emily T Martin (ET)

Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.

Adam S Lauring (AS)

Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.

Classifications MeSH