Streptococcus mutans dexA affects exopolysaccharides production and biofilm homeostasis.


Journal

Molecular oral microbiology
ISSN: 2041-1014
Titre abrégé: Mol Oral Microbiol
Pays: Denmark
ID NLM: 101524770

Informations de publication

Date de publication:
04 2023
Historique:
revised: 25 09 2022
received: 12 04 2022
accepted: 12 10 2022
pubmed: 22 10 2022
medline: 22 3 2023
entrez: 21 10 2022
Statut: ppublish

Résumé

The study aimed to evaluate the role of Streptococcus mutans (S. mutans) dexA gene on biofilm structure and microecological distribution in multispecies biofilms. A multispecies biofilm model consisting of S. mutans and its dexA mutants, Streptococcus gordonii (S. gordonii) and Streptococcus sanguinis (S. sanguinis) was constructed, and bacterial growth, biofilm architecture and microbiota composition were determined to study the effect of the S. mutans dexA on multispecies biofilms. Our results showed that either deletion or overexpression of S. mutans dexA had no effect on the planktonic growth of bacterium, while S. mutans dominated in the multispecies biofilms to form cariogenic biofilms. Furthermore, we revealed that the SmudexA+ group showed structural abnormality in the form of more fractures and blank areas. The morphology of the SmudexA group was sparser and more porous, with reduced and less agglomerated exopolysaccharides scaffold. Interestingly, the microbiota composition analysis provided new insights that the inhibition of S. gordonii and S. sanguinis was alleviated in the SmudexA group compared to the significantly suppressed condition in the other groups. In conclusion, deletion of S. mutans dexA gene re-modules biofilm structure and microbiota composition, thereby leading to decreased cariogenicity. Thus, the S. mutans dexA may be an important target for regulating the cariogenicity of dental plaque biofilms, expecting to be a probiotic for caries control.

Identifiants

pubmed: 36270969
doi: 10.1111/omi.12395
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Pagination

134-144

Subventions

Organisme : Hunan Provincial Natural Science Foundation of China
ID : 2020JJ4459
Organisme : Hunan Provincial Natural Science Foundation of China
ID : 2017JJ3403
Organisme : National Natural Science Foundation of China
ID : 81702709
Organisme : West China Hospital of Stomatology, Research and Develop Program
ID : RD-02-202001
Organisme : Central South University Education and Teaching Reform Project
ID : 2020JGB116
Organisme : Central South University Education and Teaching Reform Project
ID : 2020jy137-2

Informations de copyright

© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Aas, J. A., Griffen, A. L., Dardis, S. R., Lee, A. M., Olsen, I., Dewhirst, F. E., Leys, E. J., & Paster, B. J. (2008). Bacteria of dental caries in primary and permanent teeth in children and young adults. Journal of Clinical Microbiology, 46(4), 1407-1417. https://doi.org/10.1128/jcm.01410-07
Baker, J. L., & Edlund, A. (2018). Exploiting the oral microbiome to prevent tooth decay: Has evolution already provided the best tools? Frontiers in Microbiology, 9, 3323. https://doi.org/10.3389/fmicb.2018.03323
Bales, P. M., Renke, E. M., May, S. L., Shen, Y., & Nelson, D. C. (2013). Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens. PLoS One, 8(6), e67950. https://doi.org/10.1371/journal.pone.0067950
Bowen, W. H., Burne, R. A., Wu, H., & Koo, H. (2018). Oral biofilms: Pathogens, matrix, and polymicrobial interactions in microenvironments. Trends in Microbiology, 26(3), 229-242. https://doi.org/10.1016/j.tim.2017.09.008
Burne, R. A. (1998). Oral streptococci… products of their environment. Journal of Dental Research, 77(3), 445-452. https://doi.org/10.1177/00220345980770030301
Colby, S. M., Whiting, G. C., Tao, L., & Russell, R. R. (1995). Insertional inactivation of the Streptococcus mutans dexA (dextranase) gene results in altered adherence and dextran catabolism. Microbiology (Reading, England), 141(11), 2929-2936. https://doi.org/10.1099/13500872-141-11-2929
Ebisu, S., Misaki, A., Kato, K., & Kotani, S. (1974). The structure of water-insoluble glucans of cariogenic Streptococcus mutans, formed in the absence and presence of dextranase. Carbohydrate Research, 38, 374-381. https://doi.org/10.1016/s0008-6215(00)82375-7
Guo, L., McLean, J. S., Lux, R., He, X., & Shi, W. (2015). The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus mutans. Scientific Reports, 5, 18015. https://doi.org/10.1038/srep18015
Jiang, W., Wang, Y., Luo, J., Li, X., Zhou, X., Li, W., & Zhang, L. (2018). Effects of antimicrobial peptide GH12 on the cariogenic properties and composition of a cariogenic multispecies biofilm. Applied and Environmental Microbiology, 84(24), e01423-01418. https://doi.org/10.1128/AEM.01423-18
Koo, H., Falsetta, M. L., & Klein, M. I. (2013). The exopolysaccharide matrix: A virulence determinant of cariogenic biofilm. Journal of Dental Research, 92(12), 1065-1073. https://doi.org/10.1177/0022034513504218
Koo, H., Xiao, J., Klein, M. I., & Jeon, J. G. (2010). Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. Journal of Bacteriology, 192(12), 3024-3032. https://doi.org/10.1128/JB.01649-09
Kreth, J., Zhang, Y., & Herzberg, M. C. (2008). Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. Journal of Bacteriology, 190(13), 4632-4640. https://doi.org/10.1128/jb.00276-08
Kuang, X., Chen, V., & Xu, X. (2018). Novel approaches to the control of oral microbial biofilms. BioMed Research International, 2018, 6498932. https://doi.org/10.1155/2018/6498932
Lamont, R. J., Koo, H., & Hajishengallis, G. (2018). The oral microbiota: Dynamic communities and host interactions. Nature Reviews: Microbiology, 16(12), 745-759. https://doi.org/10.1038/s41579-018-0089-x
Lei, L., Yang, Y., Mao, M., Li, H., Li, M., Yang, Y., Yin, J., & 5Hu, T. (2015). Modulation of biofilm exopolysaccharides by the Streptococcus mutans vicX gene. Frontiers in Microbiology, 6, 1432. https://doi.org/10.3389/fmicb.2015.01432
Lemos, J. A., Palmer, S. R., Zeng, L., Wen, Z. T., Kajfasz, J. K., Freires, I. A., Abranches, J., & Brady, L. J. (2019). The biology of Streptococcus mutans. Microbiology Spectrum, 7(1), 1-18. https://doi.org/10.1128/microbiolspec.GPP3-0051-2018
Liu, Z., Hong, C. J., Yang, Y., Dai, L., & Ho, C. L. (2020). Advances in bacterial biofilm management for maintaining microbiome homeostasis. Biotechnology Journal, 15(10), e1900320. https://doi.org/10.1002/biot.201900320
Maske, T. T., van de Sande, F. H., Arthur, R. A., Huysmans, M., & Cenci, M. S. (2017). In vitro biofilm models to study dental caries: A systematic review. Biofouling, 33(8), 661-675. https://doi.org/10.1080/08927014.2017.1354248
Moraes, J. J., Stipp, R. N., Harth-Chu, E. N., Camargo, T. M., Hofling, J. F., & Mattos-Graner, R. O. (2014). Two-component system VicRK regulates functions associated with establishment of Streptococcus sanguinis in biofilms. Infection and Immunity, 82(12), 4941-4951. https://doi.org/10.1128/IAI.01850-14
Nascimento, M. M., Gordan, V. V., Garvan, C. W., Browngardt, C. M., & Burne, R. A. (2009). Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiology and Immunology, 24(2), 89-95. https://doi.org/10.1111/j.1399-302X.2008.00477.x
Otsuka, R., Imai, S., Murata, T., Nomura, Y., Okamoto, M., Tsumori, H., Kakuta, E., Hanada, N., & Momoi, Y. (2015). Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation. Microbiology and Immunology, 59(1), 28-36. https://doi.org/10.1111/1348-0421.12214
Qiu, Y. X., Mao, M. Y., Jiang, D., Hong, X., Yang, Y. M., & Hu, T. (2016). Co-operative effect of exogenous dextranase and sodium fluoride on multispecies biofilms. Journal of Dental Sciences, 11(1), 41-47. https://doi.org/10.1016/j.jds.2015.08.001
Senadheera, M. D., Lee, A. W., Hung, D. C., Spatafora, G. A., Goodman, S. D., & Cvitkovitch, D. G. (2007). The Streptococcus mutans vicX gene product modulates gtfB/C expression, biofilm formation, genetic competence, and oxidative stress tolerance. Journal of Bacteriology, 189(4), 1451-1458. https://doi.org/10.1128/JB.01161-06
Shimotsuura, I., Kigawa, H., Ohdera, M., Kuramitsu, H. K., & Nakashima, S. (2008). Biochemical and molecular characterization of a novel type of Mutanase from Paenibacillus sp. strain RM1: Identification of its mutan-binding domain, essential for degradation of Streptococcus mutans biofilms. Applied and Environmental Microbiology, 74(9), 2759-2765. https://doi.org/10.1128/AEM.02332-07
Stone, V. N., & Xu, P. (2017). Targeted antimicrobial therapy in the microbiome era. Molecular Oral Microbiology, 32(6), 446-454. https://doi.org/10.1111/omi.12190
Suzuki, N., Kim, Y. M., Fujimoto, Z., Momma, M., Okuyama, M., Mori, H., Funane, K., & Kimura, A. (2012). Structural elucidation of dextran degradation mechanism by streptococcus mutans dextranase belonging to glycoside hydrolase family 66. The Journal of biological chemistry, 287(24), 19916-19926. https://doi.org/10.1074/jbc.M112.342444
Suzuki, N., Nakano, Y., Yoshida, A., Yamashita, Y., & Kiyoura, Y. (2004). Real-time TaqMan PCR for quantifying oral bacteria during biofilm formation. Journal of Clinical Microbiology, 42(8), 3827-3830. https://doi.org/10.1128/JCM.42.8.3827-3830.2004
Tanner, A. C. R., Kressirer, C. A., Rothmiller, S., Johansson, I., & Chalmers, N. I. (2018). The caries microbiome: Implications for reversing dysbiosis. Advances in Dental Research, 29(1), 78-85. https://doi.org/10.1177/0022034517736496
Valm, A. M. (2019). The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. Journal of Molecular Biology, 431(16), 2957-2969. https://doi.org/10.1016/j.jmb.2019.05.016
Wang, B. Y., & Kuramitsu, H. K. (2005). Interactions between oral bacteria: Inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Applied and Environmental Microbiology, 71(1), 354-362. https://doi.org/10.1128/aem.71.1.354-362.2005
Welch, M., J., L, Rossetti, B. J., Rieken, C. W., Dewhirst, F. E., & Borisy, G. G. (2016). Biogeography of a human oral microbiome at the micron scale. Proceedings of the National Academy of Sciences of the United States of America, 113(6), E791-800. https://doi.org/10.1073/pnas.1522149113
Xiao, J., Hara, A. T., Kim, D., Zero, D. T., Koo, H., & Hwang, G. (2017). Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human enamel surface. International Journal of Oral Science, 9(2), 74-79. https://doi.org/10.1038/ijos.2017.8
Xiao, J., Klein, M. I., Falsetta, M. L., Lu, B., Delahunty, C. M., Yates, J. R., 3rd, Heydorn, A., & Koo, H. (2012). The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathogens, 8(4), e1002623. https://doi.org/10.1371/journal.ppat.1002623
Yang, Y., Mao, M., Lei, L., Li, M., Yin, J., Ma, X., Tao, X., Yang, Y., & Hu, T. (2019). Regulation of water-soluble glucan synthesis by the Streptococcus mutans dexA gene effects biofilm aggregation and cariogenic pathogenicity. Molecular Oral Microbiology, 34(2), 51-63. https://doi.org/10.1111/omi.12253
Yoshida, A., Suzuki, N., Nakano, Y., Kawada, M., Oho, T., & Koga, T. (2003). Development of a 5' nuclease-based real-time PCR assay for quantitative detection of cariogenic dental pathogens Streptococcus mutans and Streptococcus sobrinus. Journal of Clinical Microbiology, 41(9), 4438-4441. https://doi.org/10.1128/JCM.41.9.4438-4441.2003
Zhang, K., Wang, S., Zhou, X., Xu, H. H., Weir, M. D., Ge, Y., Li, M., Wang, S., Li, Y., Xu, X., Zheng, L., & Cheng, L. (2015). Effect of antibacterial dental adhesive on multispecies biofilms formation. Journal of Dental Research, 94(4), 622-629. https://doi.org/10.1177/0022034515571416
Zheng, X., Zhang, K., Zhou, X., Liu, C., Li, M., Li, Y., Wang, R., Li, Y., Li, J., Shi, W., & Xu, X. (2013). Involvement of gshAB in the interspecies competition within oral biofilm. Journal of Dental Research, 92(9), 819-824. https://doi.org/10.1177/0022034513498598

Auteurs

Yang Yan (Y)

Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China.

He Hailun (H)

School of Life Sciences, Central South University, Changsha, China.

Yang Fenghui (Y)

School of Life Sciences, Central South University, Changsha, China.

Liu Pingting (L)

Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China.

Lei Lei (L)

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Zhao Zhili (Z)

Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.

Hu Tao (H)

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH