CgCaspase-3 activates the translocation of CgGSDME in haemocytes of Pacific oyster Crassostrea gigas.


Journal

Fish & shellfish immunology
ISSN: 1095-9947
Titre abrégé: Fish Shellfish Immunol
Pays: England
ID NLM: 9505220

Informations de publication

Date de publication:
Dec 2022
Historique:
received: 16 08 2022
revised: 12 10 2022
accepted: 19 10 2022
pubmed: 25 10 2022
medline: 20 12 2022
entrez: 24 10 2022
Statut: ppublish

Résumé

Cysteinyl aspartate specific proteinase-3 (Caspase-3) is an important protein involved in the apoptosis and gasdermin E (GSDME)-mediated cell pyroptosis pathways in vertebrates. A Caspase-3 homologue (designated as CgCaspase-3) was previously identified as an immune receptor specific for lipopolysaccharide (LPS) to regulate apoptosis in the Pacific oyster Crassostrea gigas. In the present study, the binding activity of CgCaspase-3 to different pathogen associated molecular patterns (PAMPs) and its effects on CgGSDME translocation in haemocytes were further investigated in C. gigas. The mRNA expression of CgCaspase-3 could be detected in all the tested tissues, including hepatopancreas, labial palp, adductor muscle, gonad, gill, mantle and haemocytes, and it was highly expressed in labial palp, gonad, haemocytes, and adductor muscle. The mRNA expression of CgCaspase-3 in haemocytes increased significantly at 3, 24, 48 and 72 h after LPS stimulation, and it increased significantly at 6, 12, 24 and 48 h after Vibrio splendidus stimulation. The recombinant CgCaspase-3 displayed binding activity towards LPS, mannose (MAN), peptidoglycan (PGN), and polyinosinic-polycytidylic acid potassium salt (Poly (I:C)). The positive signals of CgGSDME on haemocyte membrane became stronger at 3 h after V. splendidus stimulation, compared with that of Seawater group, and the co-localization of CgCaspase-3 and CgGSDME was observed in the haemocyte membrane. After the injection of dsCgCaspase-3, the positive signals of CgGSDME on haemocyte membrane became weaker compared with that of EGFP-RNAi group at 24 h after V. splendidus stimulation. The results suggested that CgCaspase-3 was able to bind diverse PAMPs and activate the translocation of CgGSDME in haemocytes of oyster response against pathogen invasion.

Identifiants

pubmed: 36280129
pii: S1050-4648(22)00712-4
doi: 10.1016/j.fsi.2022.10.036
pii:
doi:

Substances chimiques

Caspase 3 EC 3.4.22.-
Lipopolysaccharides 0
Pathogen-Associated Molecular Pattern Molecules 0
RNA, Messenger 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

757-765

Informations de copyright

Copyright © 2022 Elsevier Ltd. All rights reserved.

Auteurs

Xiaopeng Li (X)

Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.

Xiaoxue Yan (X)

Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.

Jinyuan Leng (J)

Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.

Wei Wang (W)

Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.

Yinan Li (Y)

Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.

Chuanyan Yang (C)

Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.

Jiejie Sun (J)

Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.

Lingling Wang (L)

Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China. Electronic address: wanglingling@dlou.edu.cn.

Linsheng Song (L)

Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH