Coinfection by influenza A virus and respiratory syncytial virus produces hybrid virus particles.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
11 2022
Historique:
received: 10 08 2021
accepted: 02 09 2022
pubmed: 26 10 2022
medline: 1 11 2022
entrez: 25 10 2022
Statut: ppublish

Résumé

Interactions between respiratory viruses during infection affect transmission dynamics and clinical outcomes. To identify and characterize virus-virus interactions at the cellular level, we coinfected human lung cells with influenza A virus (IAV) and respiratory syncytial virus (RSV). Super-resolution microscopy, live-cell imaging, scanning electron microscopy and cryo-electron tomography revealed extracellular and membrane-associated filamentous structures consistent with hybrid viral particles (HVPs). We found that HVPs harbour surface glycoproteins and ribonucleoproteins of IAV and RSV. HVPs use the RSV fusion glycoprotein to evade anti-IAV neutralizing antibodies and infect and spread among cells lacking IAV receptors. Finally, we show that IAV and RSV coinfection in primary cells of the bronchial epithelium results in viral proteins from both viruses co-localizing at the apical cell surface. Our observations define a previously unknown interaction between respiratory viruses that might affect virus pathogenesis by expanding virus tropism and enabling immune evasion.

Identifiants

pubmed: 36280786
doi: 10.1038/s41564-022-01242-5
pii: 10.1038/s41564-022-01242-5
doi:

Substances chimiques

Antibodies, Viral 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1879-1890

Subventions

Organisme : Medical Research Council
ID : MR/N013166/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12014/7
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_17135
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12014/9
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R502327/1
Pays : United Kingdom

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Nickbakhsh, S. et al. Extensive multiplex PCR diagnostics reveal new insights into the epidemiology of viral respiratory infections. Epidemiol. Infect. 144, 2064–2076 (2016).
pubmed: 26931455 doi: 10.1017/S0950268816000339
Franz, A. et al. Correlation of viral load of respiratory pathogens and co-infections with disease severity in children hospitalized for lower respiratory tract infection. J. Clin. Virol. 48, 239–245 (2010).
pubmed: 20646956 pmcid: 7185496 doi: 10.1016/j.jcv.2010.05.007
Goka, E. A., Vallely, P. J., Mutton, K. J. & Klapper, P. E. Single and multiple respiratory virus infections and severity of respiratory disease: a systematic review. Paediatr. Respir. Rev. 15, 363–370 (2014).
pubmed: 24361079
Scotta, M. C. et al. Respiratory viral coinfection and disease severity in children: A systematic review and meta-analysis. J. Clin. Virol. 80, 45–56 (2016).
pubmed: 27155055 pmcid: 7185664 doi: 10.1016/j.jcv.2016.04.019
Asner, S. A. et al. Clinical disease severity of respiratory viral co-infection versus single viral infection: a systematic review and meta-analysis. PLoS ONE 9, e99392 (2014).
pubmed: 24932493 pmcid: 4059637 doi: 10.1371/journal.pone.0099392
Asner, S. A., Rose, W., Petrich, A., Richardson, S. & Tran, D. J. Is virus coinfection a predictor of severity in children with viral respiratory infections? Clin. Microbiol Infect. 21, 264 (2015).
Echenique, I. A. et al. Clinical characteristics and outcomes in hospitalized patients with respiratory viral co-infection during the 2009 H1N1 influenza pandemic. PLoS ONE 8, e60845 (2013).
pubmed: 23585856 pmcid: 3622008 doi: 10.1371/journal.pone.0060845
Zavada, J. The pseudotypic paradox. J. Gen. Virol. 63, 15–24 (1982).
pubmed: 6757385 doi: 10.1099/0022-1317-63-1-15
Duverge, A. & Negroni, M. Pseudotyping lentiviral vectors: When the clothes make the virus. Viruses 12, 1311 (2020).
Akkina, R. K. et al. High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 70, 2581–2585 (1996).
pubmed: 8642689 pmcid: 190105 doi: 10.1128/jvi.70.4.2581-2585.1996
Boni, M. F. et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 5, 1408–1417 (2020).
pubmed: 32724171 doi: 10.1038/s41564-020-0771-4
Smith, G. J. et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459, 1122–1125 (2009).
pubmed: 19516283 doi: 10.1038/nature08182
Lafond, K. E. et al. Global burden of influenza-associated lower respiratory tract infections and hospitalizations among adults: A systematic review and meta-analysis. PLoS Med. 18, e1003550 (2021).
pubmed: 33647033 pmcid: 7959367 doi: 10.1371/journal.pmed.1003550
Nair, H. et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375, 1545–1555 (2010).
pubmed: 20399493 pmcid: 2864404 doi: 10.1016/S0140-6736(10)60206-1
Shi, T. et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet 390, 946–958 (2017).
pubmed: 28689664 pmcid: 5592248 doi: 10.1016/S0140-6736(17)30938-8
Gaajetaan, G. R. et al. Interferon-beta induces a long-lasting antiviral state in human respiratory epithelial cells. J. Infect. 66, 163–169 (2013).
pubmed: 23201152 doi: 10.1016/j.jinf.2012.11.008
Drori, Y. et al. Influenza A virus inhibits RSV infection via a two-wave expression of IFIT proteins. Viruses 12, 1171 (2020).
George, J. A., AlShamsi, S. H., Alhammadi, M. H. & Alsuwaidi, A. R. Exacerbation of Influenza A Virus Disease Severity by Respiratory Syncytial Virus Co-Infection in a Mouse Model. Viruses 13, 1630 (2021).
Rossman, J. S. & Lamb, R. A. Influenza virus assembly and budding. Virology 411, 229–236 (2011).
pubmed: 21237476 doi: 10.1016/j.virol.2010.12.003
McCurdy, L. H. & Graham, B. S. Role of plasma membrane lipid microdomains in respiratory syncytial virus filament formation. J. Virol. 77, 1747–1756 (2003).
pubmed: 12525608 pmcid: 140864 doi: 10.1128/JVI.77.3.1747-1756.2003
Vijayakrishnan, S. et al. Cryotomography of budding influenza A virus reveals filaments with diverse morphologies that mostly do not bear a genome at their distal end. PLoS Pathog. 9, e1003413 (2013).
pubmed: 23754946 pmcid: 3675018 doi: 10.1371/journal.ppat.1003413
Ke, Z. et al. The morphology and assembly of respiratory syncytial virus revealed by cryo-electron tomography. Viruses 10, 446 (2018).
Conley, M. J. et al. Helical ordering of envelope-associated proteins and glycoproteins in respiratory syncytial virus. EMBO J. 41, e109728 (2022).
pubmed: 34935163 doi: 10.15252/embj.2021109728
Dee, K. et al. Human rhinovirus infection blocks SARS-CoV-2 replication within the respiratory epithelium: implications for COVID-19 epidemiology. J. Infect. Dis. 224, 31–38 (2021).
pubmed: 33754149 pmcid: 8083659 doi: 10.1093/infdis/jiab147
Nickbakhsh, S. et al. Virus–virus interactions impact the population dynamics of influenza and the common cold. Proc. Natl Acad. Sci. USA 116, 27142–27150 (2019).
pmcid: 6936719 doi: 10.1073/pnas.1911083116
Wu, A., Mihaylova, V. T., Landry, M. L. & Foxman, E. F. Interference between rhinovirus and influenza A virus: a clinical data analysis and experimental infection study. Lancet Microbe 1, e254–e262 (2020).
pubmed: 33103132 pmcid: 7580833 doi: 10.1016/S2666-5247(20)30114-2
Cheemarla, N. R. et al. Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics. J. Exp. Med. 218, e20210583 (2021).
Meskill, S. D., Revell, P. A., Chandramohan, L. & Cruz, A. T. Prevalence of co-infection between respiratory syncytial virus and influenza in children. Am. J. Emerg. Med. 35, 495–498 (2017).
pubmed: 28012809 doi: 10.1016/j.ajem.2016.12.001
Johnson, J. E., Gonzales, R. A., Olson, S. J., Wright, P. F. & Graham, B. S. The histopathology of fatal untreated human respiratory syncytial virus infection. Mod. Pathol. 20, 108–119 (2007).
pubmed: 17143259 doi: 10.1038/modpathol.3800725
Kuiken, T. & Taubenberger, J. K. Pathology of human influenza revisited. Vaccine 26, D59–D66 (2008).
pubmed: 19230162 pmcid: 2605683 doi: 10.1016/j.vaccine.2008.07.025
Diaz-Munoz, S. L., Sanjuan, R. & West, S. Sociovirology: Conflict, cooperation, and communication among viruses. Cell Host Microbe 22, 437–441 (2017).
pubmed: 29024640 pmcid: 5644717 doi: 10.1016/j.chom.2017.09.012
Hui, K. P. et al. Tropism, replication competence, and innate immune responses of influenza virus: an analysis of human airway organoids and ex-vivo bronchus cultures. Lancet Respir. Med. 6, 846–854 (2018).
pubmed: 30001996 doi: 10.1016/S2213-2600(18)30236-4
Zhang, L., Peeples, M. E., Boucher, R. C., Collins, P. L. & Pickles, R. J. Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J. Virol. 76, 5654–5666 (2002).
pubmed: 11991994 pmcid: 137037 doi: 10.1128/JVI.76.11.5654-5666.2002
Kolesnikova, L. et al. Influenza virus budding from the tips of cellular microvilli in differentiated human airway epithelial cells. J. Gen. Virol. 94, 971–976 (2013).
pubmed: 23288421 doi: 10.1099/vir.0.049239-0
Mohler, L., Flockerzi, D., Sann, H. & Reichl, U. Mathematical model of influenza A virus production in large-scale microcarrier culture. Biotechnol. Bioeng. 90, 46–58 (2005).
pubmed: 15736163 doi: 10.1002/bit.20363
Bruce, E. A., Digard, P. & Stuart, A. D. The Rab11 pathway is required for influenza A virus budding and filament formation. J. Virol. 84, 5848–5859 (2010).
pubmed: 20357086 pmcid: 2876627 doi: 10.1128/JVI.00307-10
Utley, T. J. et al. Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2. Proc. Natl Acad. Sci. USA 105, 10209–10214 (2008).
pubmed: 18621683 pmcid: 2481327 doi: 10.1073/pnas.0712144105
Lyles, D. S. Assembly and budding of negative-strand RNA viruses. Adv. Virus Res 85, 57–90 (2013).
pubmed: 23439024 doi: 10.1016/B978-0-12-408116-1.00003-3
Chlanda, P. et al. Structural analysis of the roles of influenza A virus membrane-associated proteins in assembly and morphology. J. Virol. 89, 8957–8966 (2015).
pubmed: 26085153 pmcid: 4524094 doi: 10.1128/JVI.00592-15
Kiss, G. et al. Structural analysis of respiratory syncytial virus reveals the position of M2-1 between the matrix protein and the ribonucleoprotein complex. J. Virol. 88, 7602–7617 (2014).
pubmed: 24760890 pmcid: 4054448 doi: 10.1128/JVI.00256-14
Li, Y., Pillai, P., Miyake, F. & Nair, H. The role of viral co-infections in the severity of acute respiratory infections among children infected with respiratory syncytial virus (RSV): A systematic review and meta-analysis. J. Glob. Health 10, 010426 (2020).
pubmed: 32566164 pmcid: 7295447 doi: 10.7189/jogh.10.010426
Calvo, C. et al. Respiratory syncytial virus coinfections with rhinovirus and human bocavirus in hospitalized children. Medicine 94, e1788 (2015).
pubmed: 26496310 pmcid: 4620789 doi: 10.1097/MD.0000000000001788
Yoshida, L. M. et al. Respiratory syncytial virus: co-infection and paediatric lower respiratory tract infections. Eur. Respir. J. 42, 461–469 (2013).
pubmed: 23645407 doi: 10.1183/09031936.00101812
Ruuskanen, O., Lahti, E., Jennings, L. C. & Murdoch, D. R. Viral pneumonia. Lancet 377, 1264–1275 (2011).
pubmed: 21435708 pmcid: 7138033 doi: 10.1016/S0140-6736(10)61459-6
Benfield, C. T., Lyall, J. W., Kochs, G. & Tiley, L. S. Asparagine 631 variants of the chicken Mx protein do not inhibit influenza virus replication in primary chicken embryo fibroblasts or in vitro surrogate assays. J. Virol. 82, 7533–7539 (2008).
pubmed: 18508886 pmcid: 2493316 doi: 10.1128/JVI.00185-08
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).
pubmed: 8742726 doi: 10.1006/jsbi.1996.0013
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563 doi: 10.1016/j.jsb.2005.07.007
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Bepler, T., Kelley, K., Noble, A. J. & Berger, B. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun. 11, 5208 (2020).
pubmed: 33060581 pmcid: 7567117 doi: 10.1038/s41467-020-18952-1
R Core Team. R: A Language and Environment for Statistical Computing (2013).
Wickham, H. Elegant graphics for data analysis. Media 35, 1007 (2009).

Auteurs

Joanne Haney (J)

MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.

Swetha Vijayakrishnan (S)

MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.

James Streetley (J)

Scottish Centre for Macromolecular Imaging, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.

Kieran Dee (K)

MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.

Daniel Max Goldfarb (DM)

MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.

Mairi Clarke (M)

Scottish Centre for Macromolecular Imaging, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.

Margaret Mullin (M)

Glasgow Imaging Facility, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.

Stephen D Carter (SD)

MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.

David Bhella (D)

MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
Scottish Centre for Macromolecular Imaging, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.

Pablo R Murcia (PR)

MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK. Pablo.Murcia@Glasgow.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH