Epileptic Seizure Detection Based on Variational Mode Decomposition and Deep Forest Using EEG Signals.

deep forest electroencephalography log−Euclidean covariance matrix seizure detection variational modal decomposition

Journal

Brain sciences
ISSN: 2076-3425
Titre abrégé: Brain Sci
Pays: Switzerland
ID NLM: 101598646

Informations de publication

Date de publication:
22 Sep 2022
Historique:
received: 30 07 2022
revised: 16 09 2022
accepted: 20 09 2022
entrez: 27 10 2022
pubmed: 28 10 2022
medline: 28 10 2022
Statut: epublish

Résumé

Electroencephalography (EEG) records the electrical activity of the brain, which is an important tool for the automatic detection of epileptic seizures. It is certainly a very heavy burden to only recognize EEG epilepsy manually, so the method of computer-assisted treatment is of great importance. This paper presents a seizure detection algorithm based on variational modal decomposition (VMD) and a deep forest (DF) model. Variational modal decomposition is performed on EEG recordings, and the first three variational modal functions (VMFs) are selected to construct the time-frequency distribution of the EEG signals. Then, the log-Euclidean covariance matrix (LECM) is computed to represent the EEG properties and form EEG features. The deep forest model is applied to complete the EEG signal classification, which is a non-neural network deep model with a cascade structure that performs feature learning through the forest. In addition, to improve the classification accuracy, postprocessing techniques are performed to generate the discriminant results by moving average filtering and adaptive collar expansion. The algorithm was evaluated on the Bonn EEG dataset and the Freiburg long-term EEG dataset, and the former achieved a sensitivity and specificity of 99.32% and 99.31%, respectively. The mean sensitivity and specificity of this method for the 21 patients in the Freiburg dataset were 95.2% and 98.56%, respectively, with a false detection rate of 0.36/h. These results demonstrate the superior performance advantage of our algorithm and indicate its great research potential in epilepsy detection.

Identifiants

pubmed: 36291210
pii: brainsci12101275
doi: 10.3390/brainsci12101275
pmc: PMC9599930
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : National Natural Science Foundation of China
ID : 62172253
Organisme : National Natural Science Foundation of China
ID : 61972226
Organisme : National Natural Science Foundation of China
ID : 62172254
Organisme : National Natural Science Foundation of China
ID : 61902215

Références

Med Biol Eng Comput. 2021 Aug;59(7-8):1431-1445
pubmed: 34128177
Diagnostics (Basel). 2021 Dec 29;12(1):
pubmed: 35054242
Neuroimage. 2022 Oct 15;260:119438
pubmed: 35792291
J Neurosci Methods. 2003 Feb 15;123(1):69-87
pubmed: 12581851
Int J Neural Syst. 2021 May;31(5):2150006
pubmed: 33522459
Curr Biol. 2019 Feb 4;29(3):R80-R85
pubmed: 30721678
Ital J Pediatr. 2020 Jan 6;46(1):2
pubmed: 31907053
IEEE Trans Neural Syst Rehabil Eng. 2022;30:135-145
pubmed: 35030083
Med Biol Eng Comput. 2019 Jun;57(6):1323-1339
pubmed: 30756231
J Neural Eng. 2022 Apr 05;19(2):
pubmed: 35320787
Sensors (Basel). 2022 Mar 18;22(6):
pubmed: 35336517
Epilepsy Behav. 2015 Apr;45:8-14
pubmed: 25780956
IEEE Trans Neural Syst Rehabil Eng. 2020 Mar;28(3):573-580
pubmed: 31940545
Comput Biol Chem. 2020 Dec;89:107406
pubmed: 33120126
Sci Rep. 2022 Jun 14;12(1):9818
pubmed: 35701505
Natl Sci Rev. 2019 Jan;6(1):74-86
pubmed: 34691833
Sensors (Basel). 2021 Nov 19;21(22):
pubmed: 34833780
Dev Cogn Neurosci. 2022 Apr;54:101067
pubmed: 35065418
J Neurosci Methods. 2010 Aug 15;191(1):101-9
pubmed: 20595035
Sensors (Basel). 2022 Apr 12;22(8):
pubmed: 35458940
Seizure. 2019 Mar;66:4-11
pubmed: 30769009
Epilepsia Open. 2022 Mar;7(1):98-109
pubmed: 34792291
Front Neurorobot. 2021 Jan 11;14:617531
pubmed: 33505263
Health Inf Sci Syst. 2022 Sep 1;10(1):24
pubmed: 36061530
IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3523-3542
pubmed: 33596172
Neural Netw. 2018 Sep;105:104-111
pubmed: 29793128
Artif Intell Med. 2020 Jan;102:101711
pubmed: 31980085
IEEE J Biomed Health Inform. 2018 Mar;22(2):386-397
pubmed: 28362595

Auteurs

Xiang Liu (X)

School of Computer Science, Qufu Normal University, Rizhao 276826, China.

Juan Wang (J)

School of Computer Science, Qufu Normal University, Rizhao 276826, China.

Junliang Shang (J)

School of Computer Science, Qufu Normal University, Rizhao 276826, China.

Jinxing Liu (J)

School of Computer Science, Qufu Normal University, Rizhao 276826, China.

Lingyun Dai (L)

School of Computer Science, Qufu Normal University, Rizhao 276826, China.

Shasha Yuan (S)

School of Computer Science, Qufu Normal University, Rizhao 276826, China.

Classifications MeSH