Transcranial Direct-Current Stimulation Does Not Affect Implicit Sensorimotor Adaptation: A Randomized Sham-Controlled Trial.
cerebellum
motor adaptation
motor learning
non-invasive brain stimulation
transcranial direct current stimulation
Journal
Brain sciences
ISSN: 2076-3425
Titre abrégé: Brain Sci
Pays: Switzerland
ID NLM: 101598646
Informations de publication
Date de publication:
29 Sep 2022
29 Sep 2022
Historique:
received:
01
09
2022
revised:
22
09
2022
accepted:
23
09
2022
entrez:
27
10
2022
pubmed:
28
10
2022
medline:
28
10
2022
Statut:
epublish
Résumé
Humans constantly calibrate their sensorimotor system to accommodate environmental changes, and this perception-action integration is extensively studied using sensorimotor adaptation paradigms. The cerebellum is one of the key brain regions for sensorimotor adaptation, but previous attempts to modulate sensorimotor adaptation with cerebellar transcranial direct current stimulation (ctDCS) produced inconsistent findings. Since both conscious/explicit learning and procedural/implicit learning are involved in adaptation, researchers have proposed that ctDCS only affects sensorimotor adaptation when implicit learning dominates the overall adaptation. However, previous research had both types of learning co-exist in their experiments without controlling their potential interaction under the influence of ctDCS. Here, we used error clamp perturbation and gradual perturbation, two effective techniques to elicit implicit learning only, to test the ctDCS effect on sensorimotor adaptation. We administrated ctDCS to independent groups of participants while they implicitly adapted to visual errors. In Experiment 1, we found that cerebellar anodal tDCS had no effect on implicit adaptation induced by error clamp. In Experiment 2, we applied both anodal and cathodal stimulation and used a smaller error clamp to prevent a potential ceiling effect, and replicated the null effect. In Experiment 3, we used gradually imposed visual errors to elicit implicit adaptation but still found no effect of anodal tDCS. With a total of 174 participants, we conclude that the previous inconsistent tDCS effect on sensorimotor adaptation cannot be explained by the relative contribution of implicit learning. Given that the cerebellum is simultaneously involved in explicit and implicit learning, our results suggest that the complex interplay between the two learning processes and large individual differences associated with this interplay might contribute to the inconsistent findings from previous studies on ctDCS and sensorimotor adaptation.
Identifiants
pubmed: 36291258
pii: brainsci12101325
doi: 10.3390/brainsci12101325
pmc: PMC9599134
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : National Natural Science Foundation of China
ID : 62061136001, 32071047, 31871116
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
J Neurosci. 2015 Apr 8;35(14):5471-9
pubmed: 25855165
Psychol Aging. 2008 Mar;23(1):190-202
pubmed: 18361666
Cortex. 2010 Jul-Aug;46(7):858-68
pubmed: 19828143
J Neurophysiol. 2018 Nov 1;120(5):2640-2648
pubmed: 30207865
Nat Neurosci. 2020 Mar;23(3):443-455
pubmed: 32112061
Brain Res Cogn Brain Res. 2005 Mar;22(3):373-83
pubmed: 15722208
J Neurophysiol. 2020 Apr 1;123(4):1552-1565
pubmed: 32208878
eNeuro. 2019 Dec 23;6(6):
pubmed: 31776177
Hum Brain Mapp. 2014 Apr;35(4):1574-86
pubmed: 23568448
Behav Brain Res. 2011 May 16;219(1):8-14
pubmed: 21138745
Psychon Bull Rev. 2021 Jun;28(3):834-844
pubmed: 33483935
Brain Stimul. 2016 Sep-Oct;9(5):692-699
pubmed: 27157059
Cereb Cortex. 2011 Aug;21(8):1761-70
pubmed: 21139077
Exp Brain Res. 2012 Jan;216(1):1-10
pubmed: 21989847
Neurosci Lett. 2019 Jan 1;688:62-75
pubmed: 29997061
Adv Exp Med Biol. 2009;629:405-21
pubmed: 19227512
Nat Commun. 2019 Jan 3;10(1):40
pubmed: 30604759
J Neurophysiol. 2012 Jun;107(11):2950-7
pubmed: 22378177
Front Hum Neurosci. 2016 Sep 13;10:453
pubmed: 27679568
Brain Stimul. 2019 Sep - Oct;12(5):1177-1186
pubmed: 31040077
J Neurophysiol. 2019 Jun 1;121(6):2112-2125
pubmed: 30943093
Cerebellum. 2012 Jun;11(2):352-65
pubmed: 21373864
J Cogn Neurosci. 2022 Jul 1;34(8):1416-1428
pubmed: 35579988
J Neurophysiol. 2013 Feb;109(4):1164-73
pubmed: 23197450
J Neurophysiol. 2021 Sep 1;126(3):934-945
pubmed: 34379553
Neuropsychologia. 2010 Jul;48(9):2595-601
pubmed: 20457170
Nat Hum Behav. 2021 Jul;5(7):920-934
pubmed: 33542527
Neurophysiol Clin. 2010 Mar;40(1):7-17
pubmed: 20230931
J Neurosci. 2006 Sep 6;26(36):9107-16
pubmed: 16957067
Exp Brain Res. 2018 Jul;236(7):2047-2059
pubmed: 29744566
Eur J Neurosci. 2021 Jan;53(2):504-518
pubmed: 32844482
J Neurophysiol. 2017 Aug 1;118(2):655-665
pubmed: 28298304
PLoS Comput Biol. 2011 Mar;7(3):e1001096
pubmed: 21390266
Clin Neurophysiol. 2014 Mar;125(3):577-84
pubmed: 24176297
Exp Brain Res. 2016 Apr;234(4):997-1012
pubmed: 26706039
J Neurophysiol. 2009 Feb;101(2):655-64
pubmed: 19019979
Brain Stimul. 2020 May - Jun;13(3):707-716
pubmed: 32289702
Front Cell Neurosci. 2019 Jan 15;12:524
pubmed: 30697149
J Physiol. 2015 Aug 15;593(16):3645-55
pubmed: 25929230
J Neurosci. 2012 Apr 4;32(14):4913-22
pubmed: 22492047
Exp Brain Res. 2010 Mar;201(3):429-39
pubmed: 19885654
Cerebellum. 2013 Dec;12(6):781-93
pubmed: 23625383
Commun Biol. 2018 Mar 22;1:19
pubmed: 30271906
J Neurosci. 2015 Jul 1;35(26):9568-79
pubmed: 26134640
Neuron. 2011 May 26;70(4):787-801
pubmed: 21609832
J Neurophysiol. 2015 Aug;114(2):969-77
pubmed: 26063781
Exp Brain Res. 2007 Aug;181(3):395-408
pubmed: 17437093
J Neurophysiol. 2020 Mar 1;123(3):1180-1192
pubmed: 32101495
J Cogn Neurosci. 2017 Jun;29(6):1061-1074
pubmed: 28195523
Hum Brain Mapp. 2015 Dec;36(12):5137-54
pubmed: 26419890
Cerebellum. 2016 Aug;15(4):466-74
pubmed: 26283524
PLoS Biol. 2021 Mar 5;19(3):e3001147
pubmed: 33667219
J Neurophysiol. 2012 Feb;107(4):1111-22
pubmed: 22131385
J Neurosci. 2005 Jan 12;25(2):473-8
pubmed: 15647491
Sci Rep. 2021 Feb 24;11(1):4464
pubmed: 33627717
PLoS One. 2017 Jul 7;12(7):e0179977
pubmed: 28686607
Eur J Neurosci. 2008 Oct;28(8):1696-704
pubmed: 18973586
Front Neurosci. 2018 Sep 18;12:610
pubmed: 30279645
J Neurosci. 2005 Oct 26;25(43):9919-31
pubmed: 16251440
J Neurosci. 2009 Jan 7;29(1):169-78
pubmed: 19129395
Conscious Cogn. 2015 May;33:156-69
pubmed: 25591080
Neural Plast. 2015;2015:968970
pubmed: 25821604
Compr Physiol. 2019 Mar 14;9(2):613-663
pubmed: 30873583
J Neurosci. 2014 Feb 19;34(8):3023-32
pubmed: 24553942
Sci Rep. 2016 Nov 08;6:36633
pubmed: 27824129
Neuroimage. 2014 Sep;98:147-58
pubmed: 24816533
J Neurophysiol. 2021 Sep 1;126(3):723-735
pubmed: 34259029
Eur J Neurosci. 2008 Jan;27(1):132-44
pubmed: 18184318
J Neurophysiol. 2004 Feb;91(2):924-33
pubmed: 14523069
J Neurophysiol. 2015 Jun 1;113(10):3836-49
pubmed: 25855690
J Neurophysiol. 2010 Apr;103(4):1954-62
pubmed: 20147417
J Neurophysiol. 2007 Jul;98(1):54-62
pubmed: 17507504
Brain Cogn. 2016 Jun;105:1-8
pubmed: 27031676
Clin Neurophysiol. 2006 Apr;117(4):845-50
pubmed: 16427357
J Neurophysiol. 2020 Jan 1;123(1):57-69
pubmed: 31721646
J Neurosci. 2009 Jul 15;29(28):9115-22
pubmed: 19605648
Front Neurosci. 2017 Nov 22;11:641
pubmed: 29213226
PLoS One. 2019 Jan 16;14(1):e0203248
pubmed: 30650083
Elife. 2022 Feb 28;11:
pubmed: 35225229
J Exp Psychol Hum Percept Perform. 2006 Aug;32(4):1006-22
pubmed: 16846294