Heme delivery to heme oxygenase-2 involves glyceraldehyde-3-phosphate dehydrogenase.
GAPDH
chaperone
glyceraldehyde-3-phosphate dehydrogenase
heme oxygenase-2
heme regulatory motifs
heme trafficking
Journal
Biological chemistry
ISSN: 1437-4315
Titre abrégé: Biol Chem
Pays: Germany
ID NLM: 9700112
Informations de publication
Date de publication:
25 Nov 2022
25 Nov 2022
Historique:
received:
12
07
2022
accepted:
10
10
2022
pubmed:
28
10
2022
medline:
16
11
2022
entrez:
27
10
2022
Statut:
epublish
Résumé
Heme regulatory motifs (HRMs) are found in a variety of proteins with diverse biological functions. In heme oxygenase-2 (HO2), heme binds to the HRMs and is readily transferred to the catalytic site in the core of the protein. To further define this heme transfer mechanism, we evaluated the ability of GAPDH, a known heme chaperone, to transfer heme to the HRMs and/or the catalytic core of HO2. Our results indicate GAPDH and HO2 form a complex
Identifiants
pubmed: 36302634
pii: hsz-2022-0230
doi: 10.1515/hsz-2022-0230
pmc: PMC9661526
doi:
Substances chimiques
heme oxygenase-2
EC 1.14.14.18
Heme
42VZT0U6YR
Heme Oxygenase (Decyclizing)
EC 1.14.14.18
Glyceraldehyde-3-Phosphate Dehydrogenases
EC 1.2.1.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1043-1053Subventions
Organisme : NIGMS NIH HHS
ID : R35 GM141758
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM130624
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM123513
Pays : United States
Informations de copyright
© 2022 Walter de Gruyter GmbH, Berlin/Boston.
Références
FASEB J. 2022 Feb;36(2):e22099
pubmed: 34972240
Cells. 2020 Feb 29;9(3):
pubmed: 32121449
J Am Chem Soc. 2002 May 29;124(21):6063-76
pubmed: 12022841
J Biol Chem. 2019 May 17;294(20):8259-8272
pubmed: 30944174
Biochemistry. 2015 May 5;54(17):2709-18
pubmed: 25853617
J Biol Chem. 2020 Jun 12;295(24):8145-8154
pubmed: 32358060
J Biol Chem. 2007 Jul 20;282(29):21056-67
pubmed: 17540772
J Biol Chem. 2015 Aug 28;290(35):21615-28
pubmed: 26134567
Nat Protoc. 2008;3(9):1527-34
pubmed: 18772880
J Biol Chem. 2018 Sep 14;293(37):14557-14568
pubmed: 30012884
Biochim Biophys Acta. 2016 May;1864(5):488-500
pubmed: 26876536
Nat Struct Biol. 1999 Sep;6(9):860-7
pubmed: 10467099
Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118881
pubmed: 33022276
Acc Chem Res. 2016 Jun 21;49(6):1104-10
pubmed: 27254265
J Biol Chem. 2007 Dec 28;282(52):37624-31
pubmed: 17965015
J Biol Chem. 2009 Jul 31;284(31):20556-61
pubmed: 19473966
J Biol Chem. 2020 Apr 17;295(16):5177-5191
pubmed: 32152224
EMBO J. 1995 Jan 16;14(2):313-20
pubmed: 7835342
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2524-9
pubmed: 24550278
Free Radic Biol Med. 2022 Feb 20;180:179-190
pubmed: 35051612
Crit Rev Biochem Mol Biol. 2022 Feb;57(1):16-47
pubmed: 34517731
Antioxid Redox Signal. 2018 Dec 20;29(18):1841-1857
pubmed: 28990415
Methods Mol Biol. 2009;498:105-15
pubmed: 18988021
J Biol Chem. 2014 Oct 24;289(43):29836-58
pubmed: 25196843
Free Radic Biol Med. 2019 Mar;133:88-100
pubmed: 30092350
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18004-9
pubmed: 20921417
J Biol Chem. 1986 Jan 5;261(1):411-9
pubmed: 3079757
Biochemistry. 2015 May 5;54(17):2693-708
pubmed: 25849895
J Biol Chem. 2020 Dec 11;295(50):17227-17240
pubmed: 33051205
Protein Expr Purif. 2002 Jun;25(1):8-15
pubmed: 12071693
J Biol Chem. 2017 Jul 7;292(27):11280-11299
pubmed: 28500133
J Biol Chem. 2022 Feb;298(2):101549
pubmed: 34973332
Science. 1998 Jul 10;281(5374):269-72
pubmed: 9657724
PLoS One. 2011;6(8):e23596
pubmed: 21858179
Biochemistry. 1999 Mar 23;38(12):3733-43
pubmed: 10090762
Nat Biotechnol. 2005 Oct;23(10):1308-14
pubmed: 16155565